Главная страница
Навигация по странице:

  • Гиалуроновая кислота

  • Хондроитинсульфаты

  • Я. Вант-Гоффа: γ

  • Энергия активации.

  • Билет Основные понятия термодинамики. Термодинамические системы определение, классификация Термодинамика


    Скачать 1.01 Mb.
    НазваниеБилет Основные понятия термодинамики. Термодинамические системы определение, классификация Термодинамика
    Дата12.01.2020
    Размер1.01 Mb.
    Формат файлаdocx
    Имя файлаBilet.docx
    ТипДокументы
    #103728
    страница3 из 14
    1   2   3   4   5   6   7   8   9   ...   14

    36)Гетерополисахариды: гиалуроновая кислота, хондроитинсульфаты. Строение, биологическая роль

    Гетерополисахариды — полисахариды, построенные из остатков различных моносахаридов, встречаются в растительных и животных организмах.

    Гиалуроновая кислота - гетерополисахарид, имеющий очень важное значение для высших организмов. В соединительной ткани это основной компонент внеклеточного желатинообразного вещества, заполняющего межклеточное пространство тканей. Она содержится в больших количествах в синовиальной жидкости суставов. Стекловидное тело и пуповина новорожденных также богаты гиалуроновой кислотой.

    В структурном отношении молекула представляет собой линейный полисахарид, образованный дисахаридными повторяющимися звеньями, состоящими из остатков D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, соединенных β-1,3-гликозидной связью. Повторяющиеся дисахаридные звенья связаны между собой β-1,4-связью.



    Био роль:


    Хондроитинсульфаты являются составной частью костной ткани, хрящей, сухожилий, роговицы глаз, сердечных клапанов и других подобных тканей. Хорошо связывают воду и катионы.

    Состоят из дисахаридных остатков N-ацетилированного хондрозина, соединенных β-1,4-гликозидными связями. В состав хондрозина входят D-глюкуроновая кислота и D-галактозамин, связанные между собой β-1,3-гликозидной связью.


    Билет № 5.

    С повышением температуры скорость химического процесса обычно увеличивается. В 1879 г. голландский ученый Я. Вант-Гофф сформулировал эмпирическое правило: с повышением температуры на 10 К скорость большинства хими­ческих реакций возрастает в 2-4 раза.

    Математическая запись правила Я. Вант-Гоффа:

    γ10 = (kт+10)/kт, где kт - константа скорости реакции при температуре Т; kт+10 - константа скорости реакции при температуре Т+10; γ10 - температурный коэффициент Вант-Гоффа. Его значение колеблется от 2 до 4. Для биохимических процессов γ10 изменяется в пределах от 7 до 10.

    Все биологические процессы протекают в определенном интер­вале температур: 45-50°С. Оптимальной температура является 36-40°С. В организме теплокровных животных эта температура поддерживается постоянной благодаря терморегуляции соответству­ющей биосистемы. При изучении биосистем пользуются темпера­турными коэффициентами γ2, γ3, γ5. Для сравнения их приводят к γ10.

    Зависимость скорости реакции от температуры, в соответствии с правилом Вант-Гоффа, можно представить уравнением:

    V2/V1 = γ ((T2-T1)/10)

    Энергия активации. Значительное возрастание скорости реакции при повышении температуры нельзя объяснить только увеличением числа столкно­вений между частицами реагирующих веществ, т.к., в соответ­ствии с кинетической теорией газов, с возрастанием температуры количество столкновений увеличивается в незначительной степени. Увеличение скорости реакции с повышением температуры объяс­няется тем, что химическая реакция происходит не при любом столк­новении частичек реагирующих веществ, а только при встрече ак­тивных частиц, обладающих в момент столкновения необходимым избытком энергии.

    Энергия, необходимая для превращения неактивных частичек в ак­тивные, называется энергией активации (Eа). Энергия активации – избыточная, по сравнению со средним значе­нием, энергия, необходимая для вступления реагирующих веществ в реакцию при их столкновении. Энергию активации измеряют в килоджоулях на моль (кДж/моль). Обычно Е составляет от 40 до 200 кДж/моль.

    Энергетическая диаграмма экзотермической и эндотермической реакции представлена на рис. 2.3. Для любого химического процесса можно выделить начальное, промежуточное и конечное состояния. На вершине энергетического барьера реагенты находятся в промежуточном состоянии, которое называется активированным комплексом, или переходным состоянием. Разность между энергией активированного комплекса и начальной энергией реагентов равна Еа, а разность между энергией продуктов реакции и исходных веществ (реагентов) - ΔН, тепловому эффекту реакции. Энергия активации, в отличие от ΔН, всегда величина положительная. Для экзотермической реакции (рис. 2.3, а) продукты расположены на более низком энергетическом уровне, чем реагенты (Еа < ΔН).





    Активированный комплекс



    Рис. 2.3. Энергетические диаграммы реакций:

    А – экзотермической Б - эндотермической
    А Б

    Еа является основным фактором, определяющим скорость реакции: если Еа > 120 кДж/моль (выше энергетический барьер, меньше активных частиц в системе), реакция идет медленно; и наоборот, если Еа < 40 кДж/моль, реакция осуществляется с большой скоростью.

    В биохимических процессах энергия активации в 2-3 раза мень­ше, чем в неорганических. Вместе с тем Еа реакции с участием чу­жеродных веществ, ксенобиотиков, значительно превышает Еа обыч­ных биохимических процессов. Этот факт является естественной биозащитой системы от влияния чужеродных веществ, т.е. есте­ственные для организма реакции происходят в благоприятных усло­виях с низкой Еа, а для чужеродных реакций Еа высокая. Это явля­ется генным барьером, характеризующим одну из главных особен­ностей протекания биохимических процессов.
    1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта