|
Билет Основные понятия термодинамики. Термодинамические системы определение, классификация Термодинамика
24) Общее представление о липидах. Классификация липидов ЛИПИДЫ- это разнородная группа природных соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге, дающих при гидролизе высокомолекулярные жирные кислоты.
В живом организме липиды выполняют разнообразные функции.
Биологические функции липидов:
1) структурная
Структурные липиды образуют сложные комплексы с белками и углеводами, из которых построены мембраны клетки и клеточных структур, участвуют в разнообразных процессах, протекающих в клетке.
2) запасная (энергетическая)
Запасные липиды (в основном жиры) являются энергетическим резервом организма и участвуют в обменных процессах. В растениях они накапливаются главным образом в плодах и семенах, у животных и рыб — в подкожных жировых тканях и тканях, окружающих внутренние органы, а также печени, мозговой и нервной тканях. Содержание их зависит от многих факторов (вида, возраста, питания и т. д.) и в отдельных случаях составляет 95—97% всех выделяемых липидов.
Калорийность углеводов и белков: 4 ккал/грамм.
Калорийность жира: 9 ккал/грамм.
Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.
3) защитная
Подкожные жировые ткани предохраняют животных от охлаждения, а внутренние органы — от механических повреждений.
Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.
Особую группу по своим функциям в живом организме составляют защитные липиды растений — воски и их производные, покрывающие поверхность листьев, семян и плодов.
4) важный компонент пищевого сырья
Липиды являются важным компонентом пищи, во многом определяя ее пищевую ценность и вкусовое достоинство. Исключительно велика роль липидов в разнообразных процессах пищевой технологии. Порча зерна и продуктов его переработки при хранении (прогоркание) в первую очередь связана с изменением его липидного комплекса. Липиды, выделенные из ряда растений и животных, — основное сырье для получения важнейших пищевых и технических продуктов (растительного масла, животных жиров, в том числе сливочного масла, маргарина, глицерина, жирных кислот и др.).
2 Классификация липидов
Общепринятой классификации липидов не существует.
Наиболее целесообразно классифицировать липиды в зависимости от их химической природы, биологических функций, а также по отношению к некоторым реагентам, например, к щелочам.
По химическому составу липиды обычно делят на две группы: простые и сложные.
Простые липиды– сложные эфиры жирных кислот и спиртов. К ним относятсяжиры,воскиистероиды.
Жиры– эфиры глицерина и высших жирных кислот.
Воски– эфиры высших спиртов алифатического ряда (с длинной углеводной цепью 16-30 атомов С) и высших жирных кислот.
Стероиды– эфиры полициклических спиртов и высших жирных кислот.
Сложные липиды – помимо жирных кислот и спиртов содержат другие компоненты различной химической природы. К ним относятсяфосфолипиды и гликолипиды.
Фосфолипиды– это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с фосфорной кислотой (фосфорная кислота может быть соединена с дополнительным соединением). В зависимости от того, какой спирт входит в состав фосфолипидов, они подразделяются на глицерофосфолипиды (содержат спирт глицерин) и сфингофосфолипиды (содержат спирт сфингозин).
Гликолипиды– это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с углеводным компонентом. В зависимости от того, какой углеводный компонент входит в состав гликолипидов, они подразделяются на цереброзиды (в качестве углеводного компонента содержат какой-либо моносахарид, дисахарид или небольшой нейтральный гомоолигосахарид) и ганглиозиды (в качестве углеводного компонента содержат кислый гетероолигосахарид).
Иногда в самостоятельную группу липидов (минорные липиды) выделяют жирорастворимые пигменты, стерины, жирорастворимые витамины. Некоторые из этих соединений могут быть отнесены к группе простых (нейтральных) липидов, другие — сложных.
По другой классификации липиды в зависимости от их отношения к щелочам делят на две большие группы: омыляемые и неомыляемые. К группе омыляемых липидов относятся простые и сложные липиды, которые при взаимодействии со щелочами гидролизуются с образованием солей высокомолекулярных кислот, получивших название «мыла». К группе неомыляемых липидов относятся соединения, не подвергающиеся щелочному гидролизу (стерины, жирорастворимые витамины, простые эфиры и т. д.).
По своим функциям в живом организме липиды делятся на структурные, запасные и защитные.
Структурные липиды - главным образом фосфолипиды.
Запасные липиды - в основном жиры.
Защитные липиды растений — воски и их производные, покрывающие поверхность листьев, семян и плодов, животных – жиры. Билет № 6.
2.12. Химическое равновесие. Обратимые и необратимые реакции Химические процессы происходят самопроизвольно, если в результате процесса уменьшается свободная энергия Гиббса, ΔG < 0. Если энтальпийный и энтропийный факторы действуют согласованно, направляя реакцию в сторону образования продуктов, то исходные вещества полностью превращаются в продукты реакции. Такие реакции называют необратимыми. Например:
2КСlО3 → 2КСl + 3О2;
Mg + 2НСl → MgCl2 + Н2.
Еcли же энтальпийный и энтропийный факторы направляют реакцию в противоположные стороны, то между исходными веществами и продуктами реакции существует минимальное значение энергии Гиббса. Исходные вещества реагируют между собой с образованием продуктов до тех пор, пока не образуется смесь исходных веществ и продуктов реакции, которой соответствует это минимальное значение G.
Если продукты реакции могут взаимодействовать между собой с образованием исходных веществ, то реакция происходит в двух противоположных направлениях. Такие реакции называют обратимыми. Например:
H2 + I2 ↔ 2HI,
N2 + 3H2 ↔ 2NH3.
В обратимых реакциях различают прямую реакцию, происходящую со скоростью V1, (ей соответствует константа скорости k1), и обратную, протекающую со скоростью V2 (ей соответствует константа скорости к2). Когда скорости прямой и обратной реакций станут равны, в системе установится состояние химического равновесия. Кинетическим условием химического равновесия является равенство скоростей прямой и обратной реакций. Химическое равновесие имеет динамический характер. Количественной характеристикой обратимой реакции служит константа равновесия. 2.13. Константа химического равновесия. Прогнозирование смещения химического равновесия Если система находится в состоянии химического равновесия, то она будет в этом состоянии до тех пор, пока внешние условия сохраняются постоянными. Если эти условия изменяются, то система выходит из равновесия. Смещение равновесия происходит в соответствии с принципом Ле Шателье: если изменяется хотя бы одно из условий, при которых система находится в состоянии химического равновесия, то равновесие смещается в сторону того процесса, который уменьшает (ослабляет) это изменение.
Сместить равновесие можно, меняя концентрацию, давление, температуру.
1. В случае увеличения концентрации любого из веществ, принимающих участие в процессе, равновесие смещается в сторону убывания этого вещества, и наоборот. Например, если в системе: Н2 + I2 ↔ 2HI, находящейся в равновесии, увеличить концентрацию водорода, то равновесие сместится в сторону образования HI.
2. При повышении давления равновесие смещается в сторону образования меньшего числа молекул газа, т.е. в сторону снижения давления, и наоборот. Например, в реакции: 2СО + О2 → 2СО2 из трех молекул исходных газообразных веществ образуются две молекулы СО2, поэтому при увеличении давления равновесие сместится в сторону образования СО2.
3. Влияние температуры. Термодинамическим условием равновесия является ΔG = 0, т. е. и из уравнения Гибсса ΔG = ΔН - TΔS, при равновесии ΔН = TΔS, этропийный и энтальпийный факторы равны.
Чтобы в такой системе компенсировать повышение температуры, следует увеличивать энтальпийный фактор. Это возможно тогда, когда теплота поглощается, т.е. ΔН > 0. Система должна быть эдотермической. И, наоборот, уменьшение температуры система компенсирует увеличением теплоты, т.е. экзотермической реакцией.
Например, в системе: 2СО + О2 ↔ 2СО2, ΔН < 0 со снижением температуры равновесие смещается вправо, в сторону экзотермической реакции, а с повышением температуры – влево, в сторону эндотермической реакции.
55) Гемопротеины. Сравнительная характеристика структур и функций миоглобина и гемоглобина. Гемопротеины, гемопротеиды — простые белки, связанные с окрашенным небелковым компонентом. Различают Г. (содержат в качестве простетической группы железо), магнийпорфирины и флавопротеины (содержат производные изоаллаксазина). К Г. относятся цитохром с, миоглобин, гемоглобин и др. Г. участвуют в таких фундаментальных процессах жизнедеятельности, как фотосинтез , дыхание клеток и целого организма, транспорт кислорода и СО2, окислительно-восстановительные реакции, свето- и цветовосприятие и др.
Миоглобин- сложный белок третьего уровня структурной организации. Состоит из одной полипептидной цепи (153 остатка). Третичная структура белка образована, главным образом, альфа-спиралями вторичной структуры, на которые приходится около 70 процентов АКО, остальные- на повороты и начальный и конечный участки. Белок содержит в себе так называемый ГЕМ- комплекс порфирина и иона железа в степени окисления +2.
Миоглобин сосредоточен, главным образом, в мышцах и его главной функцией является хранение кислорода. Скорость насыщения миоглобина кислородом намного превышает таковую для гемоглобина. Миоглобин мало приспособлен для транспортировки кислорода из легких в ткани, поскольку скорость отдачи кислорода в тканях невелика.
Гемоглобин представляет собой белок четвертичной структуры, состоящий из двух пар субъединиц альфа- (141 АКО) и бетта- (147 АКО- аминокислотных остатков). Субъединицы миоглобина и гемоглобина очень сходны между собой, как весьма сходна и третичная структура обоих белков.
Главное отличие гемоглобина от миоглобина заключается в проявлении особого рода эффектов- кооперативных, влияющих на скорости присоединения- отсоединения молекул кислорода. Каждая молекула гемоглобина способна присоединять и переносить четыре молекулы кислорода, при этом кооперативность проявляется в том, что как присоединение, так и отсоединение каждой последующей молекулы кислорода облегчается в результате структурных изменений в конформации молекулы, которых у гемоглобина имеется две основных- оксигенированная и дезоксигенированная. Промежуточные состояния нестабильны. Предполагается следующий механизм кооперативного эффекта. Присоединение первой молекулы кислорода приводит тому что атом железа смещается от своего места, вызывая изменения конформации субъединицы. Изменившаяся конформация по аллостерическому эффекту облегчает присоединение кислорода к другой субъединице и т.д. Это позволяет максимально ускорить процесс присоединения кислорода в легких . Билет №7.
56) Кооперативное связывание кислорода гемоглобином, эффект Бора, влияние 2,3-БФГ на сродство гемоглобина к кислороду.
Влияние рН на сродство гемоглобина к кислороду носит название эффекта Бора. При закислении среды сродство снижается, при защелачивании – повышается.
При повышении концентрации протонов (закисление среды) в тканях возрастает освобождение кислорода из оксигемоглобина. В легких после удаления угольной кислоты (в виде СО2) из крови и одновременном увеличении концентрации кислорода высвобождаются ионы Н+ из гемоглобина.
Реакция взаимодействия кислорода с гемоглобином упрощенно имеет вид:
Изменение сродства гемоглобина к кислороду в тканях и в легких при изменении концентрации ионов H+ и О2 обусловлено конформационными перестройками глобиновой части молекулы. В тканях ионы водорода присоединяются к остаткам гистидина, образуя восстановленный гемоглобин (H-Hb) с низким сродством к кислороду. В легких поступающий кислород "вытесняет" ион водорода из связи с остатком гистидина гемоглобиновой молекулы.
Механизм эффекта Бора Кооперативное взаимодействие
Взаимовлияние протомеров олигомерного белка друг на друга называется кооперативное взаимодействие.
В легких такое взаимодействие субъединиц гемоглобина повышает его сродство к кислороду и ускоряет присоединение кислорода в 300 раз. В тканях идет обратный процесс, сродство снижается и ускорение отдачи кислорода также 300-кратное.
Объясняется такой феномен тем, что в легких при присоединении первой молекулы кислорода к железу (за счет 6-й координационной связи) атом железа втягивается в плоскость гема, кислород остается вне плоскости. Это вызывает перемещение участка белковой цепи и изменение конформации первого протомера. Такой измененный протомер влияет на другие субъединицы и облегчает связывание кислорода со второй субъединицей. Это меняет конформацию второй субъединицы, облегчая присоединение последующих молекул кислорода и изменение других протомеров.
Изменение формы субъединиц гемоглобина при присоединении кислорода |
|
|