Билет 1 днк, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение
Скачать 336.61 Kb.
|
БИЛЕТ № 141. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин. Клеточный цикл — это период существования клетки от момента её образования путем деления материнской клетки до собственного деления. Клеточный цикл эукариот состоит из двух периодов: Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки. Периода клеточного деления, называемый «фаза М» (от слова mitosis — митоз). Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала. Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла. Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2. Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др. Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом. Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом. Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами). Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки. Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость. Эухроматин, активный хроматин обладающий способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков. 2. Общие закономерности онтогенеза многоклеточных. Избирательная активность генов в развитии. Роль цитоплазмы. Онтогенез – это индивидуальное развитие организма (особи) с момента его зарождения до прекращения существования. В других случаях онтогенез определяют как индивидуальное развитие организма, завершающееся его воспроизведением. В ходе онтогенеза многоклеточных организмов происходит рост, дифференцировка и интеграция частей организма. Существует множество типов онтогенеза (например, личиночный, яйцекладный, внутриутробный). Часть из них будет рассмотрена при изучении отдельных групп организмов. У высших многоклеточных организмов онтогенез обычно делят на два периода – эмбриональное развитие (до перехода к самостоятельному существованию) и постэмбриональное развитие (после перехода к самостоятельному существованию). Эмбриональный период онтогенеза многоклеточных животных включает следующие стадии: зиготы, ее дробления, образования бластулы (однослойного зародыша), гаструлы (двухслойного зародыша) и нейрулы (трехслойного зародыша). Зигота представляет собой оплодотворенную яйцеклетку (яйцо). Оплодотворение представляет собой процесс слияния сперматозоида с яйцеклеткой. Зигота содержит всю генетическую информацию будущего организма, цитоплазму с органоидами клетки и запас питательных веществ (желток). По содержанию желтка различают несколько типов яиц: алецитальные (без желтка), олиголецитальные (с малым содержанием желтка), мезолецитальные (с умеренным содержанием желтка) и полилецитальные (с высоким содержанием желтка). Чем больше желтка в яйце, тем больше его размеры. По распределению желтка в яйце различают следующие типы яиц: гомолецитальные (желтка мало, распределен равномерно, ядро в центре), телолецитальные (желтка много, распределен неравномерно, ядро смещено к одному из полюсов), центролецитальные (желтка много, распределен равномерно, ядро находится в центре клетки и окружено желтком). Вскоре после образования зиготы начинается ее дробление. Дробление – это ряд митотических делений яйца, в ходе которых оно, не увеличиваясь в размерах, разделяется на всё более мелкие клетки – бластомеры. На ранних стадиях дробления гены яйца не функционируют, и лишь в конце дробления начинается синтез мРНК. Существует множество типов дробления. Характер дробления зависит от таксономической принадлежности организмов: например, у круглых червей наблюдается билатеральное дробление, у кольчатых червей – спиральное, а у насекомых – поверхностное. Для яиц с низким содержанием желтка характерно полное равномерное дробление, а для яиц с высоким содержанием желтка – полное неравномерное или неполное. Кроме того, существует детерминантное дробление (с очень ранней дифференцировкой бластомеров) и индетерминантное дробление (с поздней дифференцировкой бластомеров). Различают также спиральное дробление (характерное для первичноротых животных) и радиальное дробление (характерно для вторичноротых). У многих организмов в результате дробления образуется морула – шаровидное скопление бластомеров. Иногда морулу рассматривают как отдельную стадию эмбрионального развития, а иногда как разновидность следующей стадии – бластулы. Поздние фазы дробления (бластуляция) завершаются образованием бластулы – однослойного зародыша. Существует множество типов бластул: морула, равномерная и неравномерная целобластула, равномерная и неравномерная стерробластула, дискобластула, перибластула. В простейшем случае бластула представляет собой целобластулу – полый шар, стенка которого образована бластодермой, состоящей избластомеров. При неравномерном дроблении более крупные бластомеры называютсямакромеры, а более мелкие – микромеры. Полость бластулы называется бластоцель, илипервичная полость тела. Затем в ходе гаструляции бластула превращается в двуслойный зародыш – гаструлу. Существует множество типов гаструляции. В одних случаях энтодерма образуется за счет иммиграции части бластомеров в первичную полость. В других случаях происходитинвагинация (впячивание) части бластодермы. При полном неравномерном или неполном дроблении наблюдаются другие типы гаструляции: мультиполярная и униполярная иммиграция, деламинация, эпиболия. В простейшем случае гаструла представляет собой полый шар, стенки которого образованы двумя слоями клеток. Наружный слой клеток называется эктодерма, а внутренний – энтодерма. У ряда организмов между эктодермой и энтодермой сохраняется первичная полость тела. Центральная же полость гаструлы (гастроцель, илипервичная кишка) сообщается с внешней средой с помощью бластопора, или первичного рта. В ходе нейруляции гаструла превращается в трехслойный зародыш, который у хордовых называется нейрула. Сущность нейруляции заключается в образовании мезодермы – третьего зародышевого листка. Мезодерма представляет собой клеточные пласты, расположенные между энтодермой и эктодермой. После появления всех трех зародышевых листков начинаются процессы гистогенеза(дифференцировки тканей) и органогенеза (закладки органов). Эмбриональное развитие завершается выходом организма из яйца или его рождением. Постэмбриональный период продолжается от перехода организмов к существованию вне яйца или зародышевых оболочек до полового созревания. В постэмбриональном периоде завершаются процессы органогенеза, роста и дифференцировки Избирательная активность генов Согласно полностью подтвердившейся гипотезе «один ген - один фермент», сформулированной в 1941 году (Дж. Бидл и Э. Татум за это открытие в 1958 году были удостоены Нобелевской премии), каждый ген контролирует синтез одного фермента. Однако принцип экономии (а все экономно работающие механизмы получают селективное преимущество в эволюции) требует, чтобы в клетке синтезировались только те ферменты, которые необходимы в данных обстоятельствах. Такой организм не будет расходовать вещество и энергию на ненужные синтезы, имея потенциальный резерв генов, которые в случае нужды он может снова использовать. Поэтому гены, кодирующие синтез ненужных на данной стадии развития ферментов, инактивированы (избирательно блокированы). В ходе эволюции сформировался ряд специальных механизмов избирательной активации генов. Один из них осуществляется с участием белков с низким молекулярным весом (2000-10000), входящих в состав хромосом - гистонов. Соединяясь с определёнными генами в цепи ДНК, гистоны препятствуют преждевременному считыванию информации, которая понадобится позже. Возможно, что и другие (негистоновые) белки, в т.ч. такие, синтез которых определяется генами-регуляторами, участвуют в инактивации генов, входящих в состав оперона (транскриптона). Наблюдение над политенными (гигантскими, состоящими из нескольких сот и даже тысяч хромонем) хромосомами секреторных клеток слюнных желез насекомых показало наличие расширений или вздутий - пуф. Как оказалось, в области пуф хромонемы деспирализованы. Участки, в которых появляются пуфы, меняются в ходе онтогенеза в зависимости от стадии развития. По общему признанию, деспирализованные участки являются активными, служащими матрицей для биосинтеза иРНК. Поэтому изменение морфо-функционального состояния ДНК путём спирализации-деспирализации ДНК обоснованно рассматривается в качестве одного из основных механизмов избирательной активации генов. На избирательную активность генов влияют перемещения (морфогенетические движения) клеток, их пространственное расположение. Они обеспечиваются способностью клеток к активному движению и адгезивности (избирательному образованию контактов друг с другом, в котором важную роль играет гликокаликс). Соседние клетки оказывают физические, химические и др. влияния на мигрировавшие и вступившие с ними в контакт клетки, избирательно активируя-инактивируя гены их ядер. Морфогенетические движения клеток являются одним из механизмов избирательной активации генов. На дифференциальную активность генов оказывают влияние гормоны, которые выделяются специализированными клетками и целенаправленно действуют на другие клетки и ткани. У млекопитающих, известно более 40 гормонов. Различают 3 группы гормонов: а) пептидные и белковые (инсулин, соматотропин, пролактин, лютеинизирующий и др.); б) производные аминокислот (адреналин, норадреналин, тироксин); в) стероидные (андрогены и эстрогены). Под контролем гормонов протекают все основные процессы клеточного метаболизма (начиная с зиготы), включая транскрипцию генома, регуляцию активности генов. Роль цитоплазмы. В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы — вода. Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. Это движение называется циклозом. В ней протекают все процессы обмена веществ. Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Однако нормально функционирует цитоплазма только в присутствии ядра. Без него долго существовать цитоплазма не может, так же как и ядро без цитоплазмы. Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия. 3. Метаморфоз клещей. Эпидемиологическое значение трансовариальной и трансфазовой передачи возбудителей заболеваний. Чесоточный зудень. Лайм-боррелиоз и клещевой энцефалит. Особенностью метаморфоза иксодовых клещей является то, что он не полный. Это значит, что метаморфоз происходит без стадии куколки и яйца и имаго развиваются в одной экологической нише. Таким образом, они поддерживают очаги заболеваний среди представителей данной экологической ниши. Трансовариальная передача – передача возбудителей заболеваний самкой через яйца. Трансфазовая передача – передача возбудителей заболеваний по фазам, стадиям развития. Болезнь Лайма. Один из видов клещевых баррелиозов, переносимых иксодовыми клещами. Это природно-очаговое заболевание, зооантропоноз. Впервые исследования начали в г. Лайм, США, 1975 год. Возбудителем данного заболевания является Баррелия Бургдоффера (1982г). В течении болезни выделяют 2 периода: Ранний: локальное кожное инфицирование и диссеминация (разнос). У большинства людей первые синдромы это гиперемия на месте укуса, которая проявляется через неделю. Это пятно увеличивается, в центре проявляется просветление и эритема приобретает вид кольца с ярковыраженными краями. Это клинический маркер, типичный признак болезни. По типу могут быть гриппоподобные состояния. Затем начинается разнос баррелий во все органы и ткани. 2)Через 6-12 месяцев развивается поздняя стадия болезни. Хроническая форма всех заболеваний. Возможно субклиническое течение болезни (нет признаков). Баррелиоз передается трансплацентарно. Диагноз болезни Лайма подтверждается обнаружением в крови антител к возбудителю болезни методом титрования (чем выше титр, тем выше степень поражения).ю заболевание поддается лечению антибиотиками, прививок нет. Тип: Arthropoda П\тип: Chelicerata Класс: Arachnoidea Отряд: Acarina Сем-во: Sarcoptidae Вид: Sarcoptes scabiei Морфологические особенности: микроскопические размеры, ноги сильно укорочены, с длинными концевыми щетинками, тело уплощено, глаза отсутствуют, дыхание всей поверхностью тела. Цикл развития: для проникновения в кожу зудни пробуравливают ходы. В них самки и откладывают яйца. Здесь же осуществляется метаморфоз, протекающий 1-2 недели. Продолжительность жизни взрослых клещей 40-45 дней. Деятельность усиливается ночью, когда согревается поверхность человеческого тела. |