Главная страница
Навигация по странице:

  • Реакция организма на изменение экологических факторов

  • Экологическая валентность

  • 80. Законы определяющие действие экологического фактора: закон оптимума, закон относительности, закон абсолютной незаменимости.

  • 81. Популяция – качественный этап биологических систем. Структурная организация популяций: пространственная и демографическая (возрастная, половая, размерная).

  • Пространственнвая

  • 82. Статистические и динамические показатели состояния популяции (численность, плотность, показатели структуры, рождаемость, смертность, скорость роста популяций), факторы их регулирующие.

  • 83. Сообщества, особенности в уровне их организации. Понятие о биоценозе, его структура. Биотоп. Связи организмов в биоценозе: трофические, топические, форические и фабрические. Экониша.

  • 84. Закономерности развития и смены биоценозов. Сукцессии, их типы, этапы.

  • 85. Цепи питания, пищевые сети и трофические уровни. Расход энергии в цепях питания.

  • Биология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Биологические науки


    Скачать 420.16 Kb.
    НазваниеБиология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Биологические науки
    Дата29.03.2023
    Размер420.16 Kb.
    Формат файлаdocx
    Имя файлаotvety_ekzamen.docx
    ТипДокументы
    #1023102
    страница16 из 18
    1   ...   10   11   12   13   14   15   16   17   18

    Классификации экологических факторов

    По характеру воздействия

    Прямо действующие — непосредственно влияющие на организм, главным образом на обмен веществ

    Косвенно действующие — влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

    По происхождению

    Абиотические — факторы неживой природы:

    климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха

    эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы, химический состав почвы

    орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона

    химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность

    физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения

    Биотические — связанные с деятельностью живых организмов:

    фитогенные — влияние растений

    микогенные — влияние грибов

    зоогенные — влияние животных

    микробиогенные — влияние микроорганизмов

    Антропогенные (антропические):

    физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации

    химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта

    биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания

    социальные — связанные с отношениями людей и жизнью в обществе

    По расходованию

    Ресурсы — элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет)

    Условия — не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы)

    По направленности

    Векторизованные — направленно изменяющиеся факторы: заболачивание, засоление почвы

    Многолетние-циклические — с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом

    Осцилляторные (импульсные, флуктуационные) — колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)
    Реакция организма на изменение экологических факторов

    Организмам, особенно ведущим прикреплённый, как растения, или малоподвижный образ жизни, свойственна пластичность — способность существовать в более или менее широких диапазонах значений экологических факторов. Однако при различных значениях фактора организм ведёт себя неодинаково.

    Соответственно выделяют такое его значение, при котором организм будет находиться в наиболее комфортном состоянии — быстро расти, размножаться, проявлять конкурентные способности. По мере увеличения или уменьшения значения фактора относительно наиболее благоприятного, организм начинает испытывать угнетение, что проявляется в ослаблении его жизненных функций и при экстремальных значениях фактора может привести к гибели.

    Графически подобная реакция организма на изменение значений фактора изображается в виде кривой жизнедеятельности (экологической кривой), при анализе которой можно выделить некоторые точки и зоны:

    Кардинальные точки:

    точки минимума и максимума — крайние значения фактора, при которых возможна жизнедеятельность организма

    точка оптимума — наиболее благоприятное значение фактора

    Зоны:

    зона оптимума — ограничивает диапазон наиболее благоприятных значений фактора

    зоны пессимума (верхнего и нижнего) — диапазоны значений фактора, в которых организм испытывает сильное угнетение

    зона жизнедеятельности — диапазон значений фактора, в котором он активно проявляет свои жизненные функции

    зоны покоя (верхнего и нижнего) — крайне неблагоприятные значения фактора, при которых организм остаётся живым, но переходит в состояние покоя

    зона жизни — диапазон значений фактора, в котором организм остаётся живым

    За границами зоны жизни располагаются летальные значения фактора, при которых организм не способен существовать.

    Изменения, происходящие с организмом в пределах диапазона пластичности, всегда являются фенотипическими, при этом в генотипе кодируется лишь мера возможных изменений — норма реакции, которая и определяет степень пластичности организма.

    На основе индивидуальной кривой жизнедеятельности можно прогнозировать и видовую. Однако, так как вид представляет собой сложную надорганизменную систему, состоящую из множества популяций, расселённых по различным местообитаниям с неодинаковыми условиями среды, при оценке его экологии пользуются обобщёнными данными не по отдельным особям, а по целым популяциям. На градиенте фактора откладываются обобщённые классы его значений, представляющие определённые типы местообитаний, а в качестве экологических реакций чаще всего рассматриваются обилие или частота встречаемости вида. При этом следует говорить уже не о кривой жизнедеятельности, а о кривой распределения обилий или частот.
    Экологическая валентность, степень приспособляемости живого организма к изменениям условий среды. Экологическая валентность представляет собой видовое свойство. Количественно она выражается диапазоном изменений среды, в пределах которого данный вид сохраняет нормальную жизнедеятельность. Экологическая валентность может рассматриваться как в отношении реакции вида на отдельные факторы среды, так и в отношении комплекса факторов. В первом случае виды, переносящие широкие изменения силы воздействующего фактора, обозначаются термином, состоящим из названия данного фактора с приставкой «эври» (эвритермные — по отношению к влиянию температуры, эвригалинные — к солёности, эврибатные — к глубине и т.п.); виды, приспособленные лишь к небольшим изменениям данного фактора, обозначаются аналогичным термином с приставкой «стено» (стенотермные, стеногалинные и т.п.). Виды, обладающие широкой Экологическая валентность по отношению к комплексу факторов, называются эврибионтами в противоположность стенобионтам, обладающим малой приспособляемостью. Поскольку эврибионтность даёт возможность заселения разнообразных мест обитания, а стенобионтность резко суживает круг пригодных для вида стаций, эти две группы часто называют соответственно эври- или стенотопными.
    80. Законы определяющие действие экологического фактора: закон оптимума, закон относительности, закон абсолютной незаменимости.

    1. Закон относительности действия экологического фактора: направление и интенсивность действия экологического фактора зависят от того, в каких количествах он берется и в сочетании с какими другими факторами действует. Не бывает абсолютно полезных или вредных экологических факторов: все дело в количестве. При этом экологические факторы нельзя рассматривать в отрыве друг от друга. Например, если организм испытывает дефицит воды, ему труднее переносить высокую температуру.

    2. Закон относительной заменяемости и абсолютной незаменяемости экологических факторов: абсолютное отсутствие какого-либо из обязательных факторов условий жизни заменить другими экологическими факторами невозможно, но недостаток или избыток одних экологических факторов может быть возмещен действием других. Например, полное отсутствие воды нельзя компенсировать другими экологическими факторами. Однако если другие экологические факторы находятся в оптимуме, то перенести недостаток воды легче, чем когда другие факторы находятся в недостатке или избытке.

    3. Закон оптимума (в экологии) — любой экологический фактор имеет определённые пределы положительного влияния на живые организмы.

    Результаты действия переменного фактора зависят прежде всего от силы его проявления, или дозировки. Факторы положительно влияют на организмы лишь в определенных пределах. Недостаточное либо избыточное их действие сказывается на организмах отрицательно.
    Зона оптимума — это тот диапазон действия фактора, который наиболее благоприятен для жизнедеятельности. Отклонения от оптимума определяют зоны пессимума. В них организмы испытывают угнетение.
    Минимально и максимально переносимые значения фактора — это критические точки, за которыми организм гибнет. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организма данного вида. Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организмы(зона пессимума).
    Закон оптимума универсален. Он определяет границы условий, в которых возможно существование видов, а также меру изменчивости этих условий. Виды чрезвычайно разнообразны по способности переносить изменения факторов. В природе выделяются два крайних варианта — узкая специализация и широкая выносливость. У специализированных видов критические точки значения фактора сильно сближены, такие виды могут жить только в относительно постоянных условиях. Так, многие глубоководные обитатели — рыбы, иглокожие, ракообразные — не переносят колебания температуры даже в пределах 2-3 °C. Растения влажных местообитаний (калужница болотная, недотрога и др.) моментально вянут, если воздух вокруг них не насыщен водяными парами. Виды с узким диапазоном выносливости называют стенобионтами, а с широким — эврибионтами. Если нужно подчеркнуть отношение к какому-либо фактору, используют сочетания «стено-» и «эври-» применительно к его названию, например, стенотермный вид — не переносящий колебания температур, эвригалинный — способный жить при широких колебаниях солености воды и т. п.
    81. Популяция – качественный этап биологических систем. Структурная организация популяций: пространственная и демографическая (возрастная, половая, размерная).

    Популяция - совокупность организмов одного вида, длительное время обитающих на одной территории и частично или полностью изолированных от особей других таких же групп. 

    Пространственнвая организация может быть трех видов: равномерным распределением особей, неравномерным (групповое и случайным.

    Демографическая включает возростную, половую и размерную организцию.
    82. Статистические и динамические показатели состояния популяции (численность, плотность, показатели структуры, рождаемость, смертность, скорость роста популяций), факторы их регулирующие.
    83. Сообщества, особенности в уровне их организации. Понятие о биоценозе, его структура. Биотоп. Связи организмов в биоценозе: трофические, топические, форические и фабрические. Экониша.

    Биоценоз — это совокупность животных, растений, грибов и микроорганизмов, что заселяют определённый участок суши или акватории, они связаны между собой и со средой. Биоценоз — это динамическая, способная к саморегулированию система, компоненты (продуценты, консументы, редуценты) которой взаимосвязаны. Один из основных объектов исследования экологии. Биоценоз — это исторически сложившаяся группировка растений, животных, грибов и микроорганизмов, населяющих относительно однородное жизненное пространство (участок суши или водоёма). Наиболее важными количественными показателями биоценозов являются биоразнообразие (совокупное количество видов в биоценозе) и биомасса (совокупная масса всех видов живых организмов данного биоценоза).

    Местообита́ние (ме́сто обита́ния, биото́п) — совокупность биотических, абиотических и антропогенных (при их наличии) экологических факторов на любой определённой территории или акватории, формирующаяся на месте первичного комплекса абиотических факторов — экотопа.

    Прямые и косвенные межвидовые отношения по значению, которое они имеют для занятия видом в биоценозе определенного положения, по классификации В. Н. Беклемишева (1970), подразделяются на четыре типа: 1) трофические, 2) топические, 3) форические и 4) фабрические.

    Трофические связи наблюдаются, когда один вид питается другим —либо их мертвыми остатками, либо продуктами их жизнедеятельности. При конкуренции двух видов из-за объектов питания между ними возникает косвенная трофическая связь, вследствие того что деятельность одного отражается на снабжении кормом другого. Воздействие одного вида на поедаемость другого или доступность для него пищи расценивается так же, как косвенная трофическая связь между ними.

    Топические связи характеризуют любое физическое или химическое изменение условий обитания одного вида в результате жизнедеятельности другого. Данный вид связей отличается большим разнообразием. Топические связи заключаются в создании одним видом среды для другого (внутренний паразитизм или норовый комменсализм), в формировании субстрата, на котором поселяются или избегают поселяться представители других видов, во влиянии на движение воды, воздуха, изменение температуры, освещенности окружающего пространства, в насыщении среды продуктами насыщения и т. д. Морские желуди, поселяющиеся на коже китов, лишайники на стволах деревьев связаны прямой топической связью с организмами, представляющими им субстрат или среду обитания. Значительная роль в создании или изменении среды для других организмов принадлежит растениям. Из-за особенностей энергообмена растительность является мощным фактором перераспределения тепла у поверхности Земли и создания мезо- или микроклимата. Под пологом леса подлесок, напочвенный покров, животные находятся в условиях более выравненных температур, более высокой влажности воздуха и т. д. Хотя и в меньшей степени, травянистая растительность; также изменяет режим окружающего пространства. В результате положительных или отрицательных топических взаимоотношений одни виды определяют или исключают возможность существования в биоценозе других видов.

    В биоценозе трофические и топические связи имеют наибольшее значение, составляют основу его существования. Эти типы¦ отношений удерживают друг возле друга организмы разных видов, объединяя их в сравнительно стабильные сообщества разных масштабов.

    Форические связи — это участие одного вида в распространении другого. В роли транспортировщиков выступают животные. Как нами было отмечено ранее, перенос животными семян, спор, пыльцы растений называют зоохорией. Перенос же животными других, более мелких животных называют форезией (от лат. форас, — наружу, вон). Обычно перенос осуществляется с помощью специальных и разнообразных приспособлений. Форезия животных преимущественно распространена среди мелких членистоногих: например, у разнообразных групп клещей представляет собой один из способов пассивного их расселения. Она свойственна видам, для которых перенос из одного биотипа в другой жизненно необходим для сохранения или процветания. Так, многие летающие насекомые (рис. 11.9) — посетители скоплений быстро разлагающихся органических остатков (трупов, животных, куч гниющих растений и др.) — несут на себе гамазовых, уроподовых или тирогли-фоидных клещей, переселяющихся данным способом от одного скопления пищевых материалов к другому.

    Фабрические связи — это такой тип биоценотических отношений, в которые вступает вид, используя для своих сооружений (фабрикации) продукты выделения или мертвые остатки или даже живых особей другого вида (В. Н. Беклемишев, 1970). Например, птицы употребляют для постройки гнезд ветви деревьев, листья, траву, шерсть млекопитающих, пух и перья других видов птиц и т. д. Пчела-мегахила помещает яйца и запасы в стаканчики, которые сооружены из мягких листьев различных кустарников (акации, сирени, шиповника и др.).

    Понятие экологической ниши было введено для обозначения роли, которую тот или иной вид играет в сообществе. Под эконишей следует понимать образ жизни и прежде всего способ питания организма. Экологическая ниша - абстрактное понятие, это совокупность всех факторов среды, в пределах которых возможно существование вида в природе. Она включает химические, физические и биотические факторы, необходимые организму для жизни, и определяется его морфологической приспособленностью, физиологическими реакциями и поведением.

    84. Закономерности развития и смены биоценозов. Сукцессии, их типы, этапы.

    Всю полноту взаимодействий и взаимозависимости живых существ и элементов неживой природы в области распространения жизни отражает концепция биогеоценоза.

    Биогеоценоз — это динамическое и устойчивое сообщество растений, животных и микроорганизмов, находящееся в постоянном взаимодействии и непосредственном контакте с компонентами атмосферы, гидросферы и литосферы. Биогеоценоз состоит из биотической (биоценоз) и абиотической (экотоп) частей, которые связаны непрерывным обменом веществом, и представляет собой энергетически и вещественно открытую систему (рис. 16.2). В него поступают энергия Солнца, минеральные вещества почвы, газы атмосферы, вода. Из него выделяются теплота, кислород, углекислый газ, биогенные вещества, переносимые водой, перегной.

    Биогеоценоз содержит следующие обязательные компоненты (рис. 16.3): 1) абиотические неорганические и органические вещества среды; 2) автотрофные организмы — продуценты биотических органических веществ; 3) гетеротрофные организмы (консументы) — потребители готовых органических веществ первого (растительноядные животные) и следующих (плотоядные животные) порядков; 4) детритоядные организмы — редуценты-разрушители, разлагающие органическое вещество.

    Как через любую диссипативную (т.е. рассеивающую энергию) систему, через биогеоценоз протекает регулируемый поток энергии. Эта энергия затрачивается на обеспечение постоянного круговорота веществ, поддержание целостности системы и обеспечение ее эволюции. Энергия проходит через серию трофических уровней, являющихся звеньями цепей питания.

    Первичным источником энергии служит солнечное излучение, энергия которого составляет 4,6 • 1026 Дж/с (1,1 • 1026 кал/с). 1/2000000 этого количества энергии достигает поверхности Земли, при этом 1,0—2,0% ассимилируются растениями, 30—70% поглощенной энергии используется ими для обеспечения собственной жизнедеятельности и синтеза органических веществ.

    Энергия, накопленная в растительной биомассе, составляет чистую первичную продукцию биогеоценоза. Фитобиомасса используется в качестве источника энергии и материала для создания биомассы потребителей первого порядка — растительноядных животных и далее по пищевой цепи. Количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепи трофических уровней растет, а продуктивность падает. Обычно продуктивность последующего трофического уровня составляет не более 5—20% предыдущего. Это находит отражение в соотношении на планете биомасс растительного и животного происхождения.

    Так, суммарная биомасса организмов, обитающих на суше, составляет примерно 3 • 1012 т. Лишь 1—3% этого количества — зообиомасса. Масса животного вещества, приходящегося на людей, составляет около 0,0002% от суммарной массы живого вещества планеты. Объем энергии, необходимый для обеспечения жизнедеятельности организма, растет с повышением уровня морфофунк-циональной организации. Соответственно количество биомассы, создаваемой на более высоких трофических уровнях, снижается. Например, в разных биогеоценозах 95—99,5% зообиомаесы приходится на беспозвоночных животных.

    Прогрессивное снижение ассимилированной энергии в ряду трофических уровней находит отражение в структуре экологических пирамид.

    Продукция живого вещества растительноядными животными составляет в данном случае 12,5%, а человеком — 0,6% продукции растений. Снижение количества доступной энергии на каждом последующем трофическом уровне сопровождается уменьшением биомассы и численности особей. Таким образом, пирамиды биомассы и численности организмов для данного биогеоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.

    Размеры биогеоценозов, выделяемых экологами, различны. Совокупности определенных биогеоценозов образуют главные природные экосистемы, имеющие глобальное значение в обмене энергии и вещества на планете. К ним относят: 1) тропические леса; 2) леса умеренной климатической зоны; 3) пастбищные земли (степь, саванна, тундра, травянистые ландшафты); 4) пустыни и полупустыни; 5) озера, болота, реки, дельты; 6) горы; 7) острова; 8) моря.

    Главным компонентом биогеоценоза, от состояния которого зависят его существование и изменения во времени, служит биоценоз. Биоценозы отличаются по видовому составу, и важнейшей их характеристикой является постоянное прямое или опосредованное взаимодействие популяций организмов друг с другом. Влияние любой популяции распространяется до экологически отдаленных элементов биоценоза через взаимодействие с конкурентами, хищниками, жертвами. Так, насекомоядные птицы не оказывают прямого действия на растения, но, снижая численность насекомых, питающихся листьями или опыляющих растения, они тем самым воздействуют на воспроизведение фитобиомассы. Последнее существенно для состояния популяций и продуктивности растительноядных животных, хищников, паразитов. Экологические влияния отдельной популяции распространяются в биоценозе во всех направлениях, но по мере прохождения последовательных звеньев в цепи взаимодействия интенсивность влияния ослабевает.

    Показателями структуры и функционирования биоценозов служат их видовой состав, число трофических уровней, первичная продуктивность, интенсивность потока энергии и круговоротов веществ. Структура биоценозов складывается в процессе эволюции, причем каждый вид организмов эволюционирует таким образом, чтобы занять в биоценозе определенное место. Совместное историческое развитие многих видов на одной территории способствует их специализации к использованию лишь части наличных пищевых ресурсов и ограниченному местообитанию. В результате достигается состояние взаимоприспособленности видов друг к другу, или коадаптации, которая служит обязательным условием стабильности биоценоза.

    В качестве примера рассмотрим ситуацию, возникшую в искусственном оз. Гатун, которое образовалось в начале XX столетия в зоне Панамского канала. В течение нескольких десятилетий биоценоз озера отличался стабильностью благодаря коадаптации организмов основной пищевой цепи: фитопланктон — зоопланктон — планктоноядные рыбы. Последние, поедая зоопланктон, снижали его численность, что способствовало поддержанию количества фитопланктона на достаточно высоком уровне. В 1967 г. случайно в озеро была интродуцирована хищная, прожорливая рыба туканаре. Она быстро сократила численность планктоноядных рыб, что привело к размножению зоопланктона и сокращению количества фитопланктона. Одновременно снизилась численность обитающих на озере крачек и зимородков, питающихся рыбой, и повысилась численность комаров, личинки которых прежде поедались рыбой.

    Таким образом, появление нового вида вызвало серьезные нарушения в экономике биоценоза озера и временно дестабилизировало его структуру. В дальнейшем, по мере развития коадаптации, при измененном видовом составе стабильность биоценоза может восстановиться. Состояние коадаптации достигается даже между видами-антагонистами: хищником и жертвой, хозяином и паразитом.

    Наиболее устойчивыми являются биогеоценозы, характеризующиеся: 1) большим видовым разнообразием, 2) наличием неспециализированных видов, 3) слабой степенью отграниченности от соседних экологических систем и 4) большой биомассой. Действительно, разнообразие видового состава биоценозов обеспечивает реальное существование не столько цепей, сколько сетей питания, поскольку на каждом трофическом уровне находятся организмы разных видов, способные заместить друг друга в выполнении функций биотического круговорота веществ при изменении экологической ситуации (рис. 16.4).

    Неспециализированные виды, способные обитать в меняющихся условиях и использовать разные источники питания, объединяют разные трофические уровни экологической пирамиды, упрочивая тем самым ее структуру. Обмен видами между соседними биоценозами может обеспечить восстановление даже существенно нарушенного экологического равновесия. Большое количество вещества, накопленного в виде биомассы, обладает свойствами буферности, обеспечивая систему веществом и энергией при длительном действии неблагоприятных экологических факторов, например, во время полярной ночи в высоких широтах или при длительных сезонных наводнениях в странах с муссонным климатом.
    Тесные коадаптации популяций разных видов, входящих в состав биоценоза, проявляются, как и любые другие эволюционные события; на фенотипическом уровне, но по существу они — результат микро- и макроэволюционных процессов, затрагивающих в первую очередь их генофонды. Поэтому экологический гомеостаз базируется на коадаптациях популяционных генофондов и проявляется как выражение свойства наследственности на биогеоценотическом уровне. Приобретение экологической системой новых видов или их утрата, изменение скорости и объема круговорота веществ, связанное с изменениями генофондов популяций биоценоза, а также приспособление его в целом как системы к меняющимся экологическим факторам есть проявление свойства изменчивости. Другие характеристики живых систем — обмен веществ, выступающий в биогеоценозе в виде биогенного круговорота, и самовоспроизведение, в результате которого на базе исходного биогеоценоза возможно возникновение дочерних экосистем, — также проявляются на этом уровне организации жизни. Благодаря этому в биогеоценозах реализуется и такое фундаментальное свойство живого, как способность эволюционировать.
    ЭВОЛЮЦИЯ БИОГЕОЦЕНОЗОВ

    Любая территория, пригодная к жизни по набору абиотических факторов, заселяется. Этот процесс называют сукцессией. В соответствии с трофической структурой биоценоза первостепенная роль в освоении новых местообитаний принадлежит растительным организмам. Развитие растительности в местообитаниях, где прежде растений не было, обозначают как первичную сукцессию, а в местах с предсуществовавшим, но разрушенным растительньм покровом — как вторичную.

    В процессе сукцессии изменяются видовой состав биоценоза и характеристики местообитания. Вслед за растениями в сукцессию вовлекаются представители животного мира, а развивающийся био-геоценоз становится все более богатым видами; цепи питания в нем усложняются, разветвляются и превращаются в сети питания. Среди животных растет количество всеядных видов, активизируется функция редуцентов, возвращающих органическое вещество из почвы в состав биомассы, благодаря чему ее объем неуклонно растет.

    Сукцессия завершается климаксом — образованием сообщества, видовой состав которого в дальнейшем изменяется незначительно. Скорость сукцессии по мере приближения к состоянию климакса снижается. Процесс практически прекращается, когда добавление или исключение видов не приводит к изменению среды развивающегося биогеоценоза, т.е. между элементами биоценоза и физической средой по достижении климакса устанавливается равновесие.

    Из наблюдений за заселением песчаных дюн или вновь образованных потоков лавы в результате первичной сукцессии, а также вырубок или заброшенных пашен в процессе вторичной сукцессии следует, что для достижения состояния климакса требуются сотни и тысячи лет. Климаксные сообщества, возникающие в результате сукцессии разных местообитаний, различаются по производимой биомассе: тропический лес, леса умеренной зоны, болота. Максимальный объем биомассы ограничивается климатом соответствующего района.

    Примером сукцессии служит зарастание некрупных пресноводных водоемов. Последовательное отмирание и придонное отложение мелких планктонных организмов, донных водорослей, водоплавающих растений, сопровождаемые сменой преобладающих видов животных и микроорганизмов, обусловливают трансформацию водных биогеоце-нозов в биогеоценозы болотного типа.

    Климаксные сообщества на протяжении определенного времени характеризуются состоянием устойчивого равновесия, что проявляется в их способности возвращаться в исходное состояние после кратковременных внешних воздействий, изменяющих условия существования, и противостоять этим воздействиям. Так, в одном из климаксных биогеоценозов при временном понижении осадков на 50 % по сравнению с их обычным количеством продукция фитобиомассы снижалась на 25%, а численность популяций растительноядных — всего на 10%. Устойчивость подобных сообществ зависит как от гомеостатических реакций организмов и популяций, так и от условий физической среды. В приведенном примере она могла быть обусловлена запасом влаги в почве и реакцией растений на засуху. Несмотря на высокую степень устойчивости биогеоценозов, глобальное изменение условий среды, связанное с эпохальными сменами климата, приводит и к эволюции климаксных экологических систем.

    В настоящее время под действием антропогенных факторов климаксные экологические системы сменяются менее устойчивыми либо в связи с прямым их разрушением, либо за счет загрязнения окружающей среды.

    Так, в районе Москвы почвенно-климатические условия соответствуют развитию биогеоценозов дубовых лесов, господствовавших здесь до XV—XVIII вв. Вырубка дубрав и хозяйственное освоение территорий привели к появлению на их месте обедненных биогеоценозов березово-осиновых и еловых лесов. Участки древних дубрав сохранились местами в старинных парках и на границе Москвы в ее северо-восточной части, но поддержание состояния относительного равновесия в них требует уже значительных материальных затрат.

    Взаимная адаптация популяций разных видов, включенных в состав эволюционирующего биогеоценоза, представляет собой процесс их соотносительной эволюции, сопровождающейся направленными изменениями аллелофондов этих популяций. В результате система аллелофондов биогеоценоза в целом как уровня организации жизни изменяется.

    Таким образом, эволюция биогеоценоза базируется на эволюции отдельных популяций разнообразных организмов, а результатом ее является возникновение сообщества, включающего в себя новые виды, каждый из которых выполняет присущую только ему функцию в целостной системе.
    85. Цепи питания, пищевые сети и трофические уровни. Расход энергии в цепях питания.
    1   ...   10   11   12   13   14   15   16   17   18


    написать администратору сайта