Главная страница
Навигация по странице:

  • Компоненты ядра

  • Правило постоянства числа хромосом

  • Правило индивидуальности хромосом .

  • Состав

  • Структурные

  • гликокаликс.

  • Транспорт

  • Простая диффузия

  • В стабильных клеточных комплексах

  • Обновляющиеся клеточные комплексы

  • Естественная гибель клетки

  • Биологическое значение митоза.

  • Пахитена.

  • Биологическое значение мейоза

  • Размножение - основное свойство живого. Способы бесполого размножения. Эволюция форм полового размножения (изогамия, анизогамия, оогамия). Определение, сущность, биологическое значение

  • Биология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Биологические науки


    Скачать 420.16 Kb.
    НазваниеБиология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Биологические науки
    Дата29.03.2023
    Размер420.16 Kb.
    Формат файлаdocx
    Имя файлаotvety_ekzamen.docx
    ТипДокументы
    #1023102
    страница2 из 18
    1   2   3   4   5   6   7   8   9   ...   18

    Включениянепостоянные структуры цитоплазмы, которые являются продуктами жд клетки. Виды: трофические – запасные питательные вещества, секреторные – пузырьки с веществами, напрмиер гормоны, экскреторные – конечные продукты обмена веществ, шлаки, и пигментные – красящие вещества, например, меланин.

    6. Наследственный аппарат клетки; роль ядра и цитоплазмы в передаче наследственной информации. Ядро, его значение для жизнедеятельности клеток, основные компоненты ядра. Цитоплазматическая наследственность: плазмиды и эписомы.

    В интерфазной клетке наследственный аппарат представлен хромотином. Перед делением из него формируются хромосомы, которые содержат гены и предназначены для хранение генетической информации.

    Ядро – один из основных компонентов клетки. Оно необходимо для хранения, передачи и реализации генетической информации. Ядро является носителем ДНК. Докозать роль ядра в передачи наследственной информации смогли несколькимиопытами. Первый опыт – опыт с яйцеклетками разных видов лягушек. У одной лягушки из яйцеклетки удалили ядро и на его место внесли ядро другой лягушки. В результате получилась лягушка с признаками двух особей. Следовательно, ядро отвечает за передачу ген информации. Второй опыт – опыт с водорослями. У одного вида водорослей ядро находится в основании стебелька. Перерезали ножку и наблюдали, что нижняя часть смогла регенерировать ткани и восстановить прежний вид, а отрезанная часть погибла.

    Роль цитоплазмы заключается в том, что ее компоненты, митохондрии и пластиды, имеют собственную ДНК, следовательно, могут участвовать в передаче наследственной информации.

    Ядро было открыто Робертом Броуном. Оно является основным компонентом клетки.

    Компоненты ядра: ядерная оболочка, ядерный сок, хроматин, который прилегает к ядерной ламине, и ядрышко.

    Функции: хранение (обеспечивается репарацией ДНК), передача (репликация ДНК и ее распределение при делении клетки) и реализация ген информации (транскрипция РНК и образование рибосом).

    7. Роль хромосом в передаче наследственной информации (косвенные и прямые доказательства). Правила хромосом. Современные представления о строении хромосом. Уровни организации ДНК в хромосомах. Хроматин – как форма существования хромосом: строение и химический состав.



    1. Правило постоянства числа хромосом - Каждый вид живых организмов имеет определенное постоянное число хромосом.

    2. Правило парности хромосом. Число хромосом в соматических клетках всегда четное, это связано с тем, что хромосомы составляют пары. Хромосомы одной пары имеют одинаковое строение и набор генов. Они называются гомологичными

    3. Правило индивидуальности хромосом. Каждая пара хромосом характеризуется своими особенностями строения и набором генов.

    4. Правило непрерывности хромосом. Хромосомы способны к авторепродукции. В основе лежит репликация ДНК по полуконсервативному механизму.

    8. Биологические мембраны: их строение и свойства. Плазмалемма: строение, функция. Клетка как открытая система. Способы проникновения веществ в клетку: сущность, значение в медицине. Пассивный путь проникновения веществ в клетку (осмос, диффузия, фильтрация). Медицинское значение изучения данных процессов в клетке. Активный путь проникновения веществ в клетку («ионный насос», пиноцитоз, фагоцитоз). Их роль для одноклеточных и многоклеточных организмов.

    Структурную основу мембраны составляет бимолекулярный слой липидов

    Состав: Липиды 25-60 %, Белки 40-75%, Углеводы 2-10%

    Белки по расположению в мембране бывают: Поверхностные(периферические), Интегральные(погруженные и сквозные) По функции: Структурные, Ферменты, Переносчики, Рецепторы. Так же, как и липиды подвижны.

    Углеводы образуют длинные ветвящиеся цепочки. Химически связаны либо с белками (гликопротеиды), либо с липидами (гликолипиды). Образуют надмембранный слой. Углеводный слой мембраны называется гликокаликс. Функция: рецепторная (узнавание клеток, гормонов, вирусов и т.д.)

    Свойства мембран: Подвижность, Ассимметричность, Замкнутость, Избирательная проницаемость, Изменение фазового состояния (вязкости)

    Транспорт: активный (с затратом энергии против градиента) и пассивный (без затрата энергии по градиенту).

    Осмос - это одностронняя диффузия молекул растворителя (воды) через полупроницаемую мембрану

    Простая диффузия — перенос веществ через мембрану по градиенту концентрации (из области высокой концентрации в область низкой концентрации) без затрат энергии.

    Облегченная диффузия — процесс трансмембранного переноса веществ по градиенту концентрации с участием мембранных белков-переносчиков без затраты энергии

    Фильтрация – транспорт простых ионов через специальные ионные каналы, образованные интегральными белками.

    9. Жизненный цикл клетки, его периоды, их характеристика, особенности у различных видов клеток. Морфофункциональная характеристика и динамика структуры хромосом в клеточном цикле. Механизм регуляции митотической активности. Понятия о митогенах и митостатиках. Митотический индекс. Категории клеточных комплексов (растущие, обновляющиеся, статические). Главные механизмы митотического цикла, обеспечивающие поддержание генетического гомеостаза. Понятие об апоптозе.
    Совокупность процессов, происходящих от образования клетки до ее гибели называется жизненным циклом. Говоря о жизненном цикле необходимо отметить, что в тканях растений и животных всегда есть клетки, которые находятся как бы вне цикла. Их принято называть клетками G0-периода период покоя. Это так называемые покоящиеся, переставшие размножаться клетки. При необходимости такие клетки могут возвращаться «в цикл». Таких клеток много в обновляющихся тканях: песени, костном мозге, эпителии и т.д. Вторая группа клеток, покидающих «цикл» навсегда – это клетки Gh – перирда – периода дифференцировки. Такие клетки проходят терминальную дифференцировку, выполняют функцию и гибнут. Однако понятие жизненного цикла более широкое. Совокупность процессов протекающих в клетке от одного деления до другого и само деление называют митотическим циклом. Митотический цикл – это часть жизненного цила. Длительность его различна для различных организмов. Например, для бактериальных клеток цикл может занимать 20-30 минут. Клетки многоклеточных организмов обладают разной способностью к делению. Если на ранних стадиях развития организма они делятся быстро, то во взрослом организме большей частью теряют эту способность. В типичном митотическом цикле ЭК выделяют интерфазу и митоз. Интерфаза состоит из нескольких периодов:

    1)  пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

    2)  синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

    В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

    3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных). Процесс пролиферации клеток жестко регулируется как самой клеткой, так и ее микроокружением. Нарушение регуляции пролиферации приводит к неограниченному делению клетки, что в свою очередь инициирует развитие онкологического процесса в организме. Регуляторные факторы, контролирующие размножение клеток можно условно разделить на две группы: экзогенные и эндогенные. Экзогенные факторы находятся в микроокружении клетки и взаимодействуют с поверхностью клетки. Факторы, которые синтезируются самой клеткой и действуют внутри нее, относятся к эндогенным. Такое подразделение весьма условно, поскольку некоторые факторы, будучи эндогенными по отношению к продуцирующей их клетке, могут выходить из нее и действовать как экзогенные регуляторы на другие клетки. Если регуляторные факторы взаимодействуют с теми же клетками, которые их продуцируют, то такой тип контроля называется аутокринным. Экзогенные факторы:

    1. Ритмический зависит от внешних факторов (ритма активности, света, температуры) и внутренних (нейрогуморальная регуляция)

    2. Пищевой – полноценное питание стимулирует митотическую активность

    Эндогенные факторы:

    1. Эндокринный – соматотропин, гормоны щитовидной железы

    2. Цитокины, молекулы адгезии

    3. Митогены –акселераторы митоза (стимулируют митоз)

    4. Цитостатики – супрессоры митоза (подавляют митотическую активность)

    5. Генетический фактор

    Для изучения митотической активности и обновления клеточных ком­плексов применены новейшие методы: определение числа ядер, изучение изменения количественного содержания ДНК в ткани; изучение клеточ­ного деления посредством радиоавтографии, т. е. путем включения радио­активных изотопов в ДНК и др. Применение названных методов позволило разделить все ткани на три категории клеточных комплексов: стабильные, растущие и об­новляющиеся. В стабильных клеточных комплексах не обнаруживаются митозы и количественное содержание ДНК остается постоянным. К таким клет­кам, которые никогда не делятся (у человека в возрасте старше 7 дней), относятся клетки центральной и периферической нервной системы. Эти клетки сохраняются на протяжении всей жизни, но в них происходят возрастные изменения. К числу растущих клеточных комплексов относятся такие группы од­нородных клеток, в которых всегда встречаются отдельные клетки, нахо­дящиеся в стадии митоза. Предполагается, что клетки в этих комплексах живут на протяжении всей жизни организма, а за счет вновь образую­щихся клеток происходит увеличение органа. Из таких клеточных ком­плексов состоят почки, надпочечники, щитовидная и поджелудочная же­лезы, скелетные и сердечная мышцы. Обновляющиеся клеточные комплексы - это группы однородных кле­ток с большим числом митозов. В этих комплексах число вновь образу­ющихся клеток восполняет такое же число систематически погибающих. Примерами обновляющихся комплексов могут служить клетки желу­дочно-кишечного тракта, клетки кожного эпидермиса, ткань семенников и кроветворных органов и др. Естественная гибель клетки (апоптоз). К сожалению, до сих пор процесс естественной гибели клеток до конца не изучен. Известно, что в клетке из-за блокирования ферментов прекращается синтез белка, а нет белка – нет и жизни. Морфологически апоптоз характеризуется разрушением ядра и цитоплазмы. “Осколки” погибшей клетки поглощаются и перерабатываются специальными клетками иммунной системы – фагоцитами. Но ведь клетки могут погибнуть и под воздействием случайных факторов (механических, химических и любых других). Случайная гибель клеток (а также ткани, органа) в биологии называется некрозом. Важно то, что естественная клеточная гибель (апоптоз) в отличие от некроза не вызывает воспаления в окружающих тканях. Апоптоз не вызывает воспаления в окружающих тканях. В организме запрограммированная клеточная гибель выполняет функцию, противоположную митозу, и, тем самым, регулирует общее число клеток в организме. Апоптоз играет важную роль в защите организма при вирусных инфекциях. В частности, иммунодефицит при ВИЧ-инфекции определяется нарушениями в контроле апоптоза. Теперь, когда мы рассмотрели все этапы жизненного цикла клеток, коротко остановимся на процессах регуляции численности клеток в организме. Во время эмбриогенеза (первого этапа внутриутробного развития) число клеток постоянно возрастает, причем в геометрической прогрессии.

    10. Основные способы деления клетки: митоз, мейоз и амитоз. Определение, характеристика процессов и их биологическое значение. Биологическое отличие мейоза от митоза. Митоз и проблемы роста, регенерации, опухолевого роста.

    Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него.Митотический цикл — это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций. Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно — одна незаметно переходит в другую. В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть — прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр). В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n2хр). В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (2nlxp). В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n1хр).

    Нетипичные формы митоза

    К нетипичным формам митоза относятся амитоз, эндомитоз, политения. 1. Амитоз — это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма. Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, — оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток. 2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию. 3. Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). По-литенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

    Биологическое значение митоза.

    Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы. Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

    Мейоз

    При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет) и последующего развития из оплодотворенной яйцеклетки — зиготы. Половые клетки родителей обладают гаплоидным набором (n) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому. Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления — мейоза.

    Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК. Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр. Профаза I. Во время профазы происходит обмен генетической информацией между гомологичными хромосомами. Это самая сложная фаза мейоза, которая подразделяется на 5 под фаз.

    Лептотена или стадия тонких нитей. Она названа так, потому что благодаря максимальному уплотнению хроматина можно различить отдельные хромосомы в ядре, которые выглядят, как тонкие нити.  Зиготена. Хромосомы объединяются в гомологичные пары. Каждая пара является уникальной по своей форме и расположению перетяжки. Такие пары хромосом называются биваленты. На этой стадии гомологичные хромосомы начинают сближаться по всей длине, образуя синаптонемальный комплекс. Этот процесс похож на застёгивание молнии. Пахитена. Гомологичные хромосомы начинают избирательно обмениваться генами. Такой процесс носит название кроссинговер. Диплотена. Синаптонемальный комплекс распадается, хроматин частично теряет свою плотную структуру, хромосомы немного отодвигаются друг от друга, но остаются связанными. Может проходить синтез и-РНК. Диакинез. Ядерная оболочка растворяется и превращается в визикулы. Хроматин опять уплотняется. Две центромеры, содержащие центриоли расходятся к полюсам клетки - образуется веретено деления. Микротрубочки прикрепляются к кинетохору хромосом.  В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр). В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса. В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр). Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза. В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp). Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

    Биологическое значение мейоза:

    1)  является основным этапом гаметогенеза;

    2)  обеспечивает передачу генетической информации от организма к организму при половом размножении;

    3)  дочерние клетки генетически не идентичны материнской и между собой.

    А так же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом.

    11. Размножение - основное свойство живого. Способы бесполого размножения. Эволюция форм полового размножения (изогамия, анизогамия, оогамия). Определение, сущность, биологическое значение.
    1   2   3   4   5   6   7   8   9   ...   18


    написать администратору сайта