Главная страница
Навигация по странице:

  • 3. «Белая»

  • 5. «Синяя»

  • Основные факторы, обусловившие развитие современной биотехнологии.

  • Связи биотехнологии с биологическими, химическими, техническими и другими науками.

  • Биотехнология как межотраслевая область научнотехнического прогресса и раздел практических знаний, этапы ее развития


    Скачать 334.5 Kb.
    НазваниеБиотехнология как межотраслевая область научнотехнического прогресса и раздел практических знаний, этапы ее развития
    Дата07.01.2022
    Размер334.5 Kb.
    Формат файлаdoc
    Имя файлаbt_otvety.doc
    ТипДокументы
    #325417
    страница1 из 5
      1   2   3   4   5

    1. Биотехнология как межотраслевая область научно-технического прогресса и раздел практических знаний, этапы ее развития.


    Биотехнолоигя включает казалось бы совершенно не связанные между собой разделы научных знаний: микробиологию, анатомию растений и животных, биохимию, иммунологию, клеточную биологию, физиологию растений и животных, различные систематики, экологию, генетику, биофизику, математику и много других областей естествознания.

    Постоянно увеличивающееся разнообразие современной биологии началось после окончания второй мировой войны, когда в биологию внедрились другие естественнонаучные дисциплины, такие как физика, химия и математика, которые сделали возможным описание жизненных процессов на новом качественном уровне – на уровне клетки и молекулярных взаимодействий.

    Именно существенные успехи в фундаментальных исследованиях в области биохимии, молекулярной генетики и молекулярной биологии, достигнутые во второй половине текущего столетия, создали реальные предпосылки управления различными (пусть, возможно и не самыми главными) механизмами жизнедеятельности клетки. Сложившаяся благоприятная ситуация в биологии явилась мощным толчком в развитии современной биотехнологии, весьма важной области практического приложения результатов фундаментальных наук. Можно с уверенностью утверждать, что биотехнология является наиболее разительным примером того, как результаты, казалось бы "чистой науки", находят применение в практической деятельности человека.

    Абсолютно новым направлением является так называемая инженерная энзимология, возникшая вследствие развития современных методов изучения структуры и синтеза белков-ферментов и выяснения механизмов функционирования и регуляции активности этих соединений (важных элементов клетки). Достижения -модифицировать белки различной сложности и специфичности функционирования,

    По определению Эреки биотехнология – это «все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты». Биотехнология оказалась необратимо связанной с исследованиями в области промышленного производства товаров и услуг при участии живых организмов, биологических систем и процессов. Биотехнология – это наука, которая на основе применения знаний в области микробиологии, биохимии, генетики, генной инженерии, иммунологии, химической технологии, приборо- и машиностроения используют биологические объекты (микроорганизмы, клетки тканей животных и растений) или молекулы (нуклеиновые кислоты, белки, ферменты, углеводы и др.) для промышленного производства полезных для человека и животных веществ и продуктов.

    В узком смысле биотехнология – это совокупность методов и приемов разработки и введения в сферу потребления полезных для человека продуктов, включая методы генной, клеточной и экологической инженерии.

    Биотехнологические методы используются в различных отраслях промышленности и затрагивают многие сферы человеческой деятельности. Согласно этому в мире принята «цветовая» классификация биотехнологии в зависимости от областей ее применения:

    1. «Красная» - обеспечение поддержки здоровья и прогрессивного развития методов лечения человека (вплоть до коррекции его генома), а также производство биофармапрепаратов (протеинов, ферментов, антител).

    2. «Зеленая» - разработка и создание генетически модифицированных (ГМ) растений, устойчивых к биотическим и абиотическим стрессам; оптимизация методов ведения сельского и лесного хозяйства:

    3. «Белая» - промышленная, объединяющая производство в пищевой, химической (в том числе биотопливо) и нефтеперерабатывающей индустрии;

    4. «Серая» - природоохранная деятельность, биоремедиация;

    5. «Синяя» - использование морских организмов и сырьевых ресурсов.

    6. «Чёрная» - отряд 731 ввёл разножение чумных возбудителей на животных и пленных. В 2011 г катастрофа в Мексиканском заливе с нефтеперераб. Вышками. Вывели бактрию, которая должна перерабатывать нефть. Она начала заражть людей.

    Биотехнология – междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических знаний и призванная к созданию новых биотехнологических процессов, которые в большинстве случаев будут осуществляться при низких температурах, требовать небольшого количества энергии и будут базироваться преимущественно на дешевых субстратах, используемых в качестве первичного сырья.

    Из вышесказанного следует, что биотехнология является межотраслевой дисциплиной. Она основана на многопрофильной стратегии для решения различных проблем.

    В биотехнологии применяются методы, заимствованные из химии, микробиологии, биохимии, молекулярной биологии, химической технологии и компьютерной техники с целью создания новых разработок. Главная причина успеха развития биотехнологии – стремительное развитие молекулярной биологии. Например, успехи в разработке технологии рекомбинантных молекул ДНК.

    Ни для кого не секрет, что ископаемое топливо в один прекрасный день станут крайне ограниченным. Данное обстоятельство заставляет искать новые, более дешевые и лучше сохраняемые источники энергии и питания, которые могли бы восполняться биотехнологическим путем. Вся бт строится на МБ, генетике, биохимии. В бт есть 3 направления: микробная (синтез мб продуцентов), генетическая клеточная инженерия, генетическая энзимология.

    Биотехнология формировалась и эволюционировала по мере формирования и развития человеческого общества. Условно в развитии биотехнологии можно выделить 4 этапа.

    1. Эмпирический этап или доисторический. Это самый длительный период. Известно, что шумеры – первые жители Месопотамии (на территории современного Ирака) – создали первую цветущую цивилизацию. Они выпекали хлеб из кислого теста, владели искусством готовить пиво.

    Для эмпирического периода характерно получение кисломолочных продуктов, квашенной капусты, медовых алкогольных напитков, силосование кормов.

    В 1796 году Э. Дженнер впервые в истории провел прививку человеку коровьей оспы.

    2. Этиологический этап. Связан с выдающимися исследованиями великого французского ученого Л. Пастера (1822 – 1895) – основоположника научной микробиологии. Пастер установил микробную природу брожения, доказал возможность жизни в бескислородных условиях, создал научные основы вакцинопрофилактики и др.

    В 1859 г. – Л. Пастер приготовил жидкую питательную среду, Р. Кох в 1881 году предложил метод культивирования бактерий на стерильных ломтиках картофеля и на агаризованных питательных средах. Как следствие, удалось доказать индивидуальность микробов и получить их в чистых культурах. Достижения 2-го периода: 1884 г. – Ф. Леффлер изолировал и культивировал возбудителя дифтерии. На этом этапе во Франции приступили к созданию биоустановок для микробиологической очистки сточных вод.

    3. Биотехнический этап. Наиболее важные достижения этого этапа:

    - Внедрение в практику биореактора (ферментера, аппарата-культиватора);

    - Разработка теории электрофореза;

    - Обнаружение вирусов с помощью электронного микроскопа;

    - Производство пенициллина в промышленных масштабах;

    - Процесс конъюгации у E. Coli;

    - Разработка вакцины против желтой лихорадки;

    - Описание плазмиды как внехромосомного фактора наследственности;

    - Расшифровка структуры ДНК;

    - Прочитаны первые три буквы генетического кода аминокислоты фенилаланина; и т.д.

     4. Геннотехнический период. П. Берг создал первую рекомбинацию молекулы ДНК.

    -метод получения моноклональных антител;

    - метод анализа первичной структуры ДНК путем химической деградации;

    - разрешен к применению в США первый диагностический набор моноклональных тел;

    - 1982 год – в продажу поступил впервые человеческий инсулин;

    - 1986 г. – метод полимеразной цепной реакции;

    1. Основные факторы, обусловившие развитие современной биотехнологии.

    Развитие биотехнологии определяется высоким уровнем технологических новшеств. Здесь прежде всего имеются в виду производство питания за счет широкомасштабного выращивания дрожжей, водорослей и бактерий для получения белков, аминокислот, витаминов и ферментов; повышение продуктивности сельскохозяйственных культур (клонирование и отбор разновидностей растений на основе тканевых культур in vitro); биоинсектициды, биоудобрения; уменьшение загрязнения окружающей среды (очистка сточных вод, переработка отходов и побочных продуктов сельского хозяйства и промышленности).

    Развитие биотехнологии и новых отраслей связано с эволюцией общего направления биологических исследований и возможностями получения легкодоступных и возобновляемых ресурсов, важных для жизни и благосостояния людей. Что касается более современных биотехнологических процессов, то они основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток или клеточных органелл. Другими словами, развитие биотехнологии в огромной степени определяется исследованиями в области микробиологии, биохимии, энзимологии и генетики микроорганизмов.

    1. Рост числа населения

    2. Энергетические ресурсы истощаются

    3. Биоразнообразие оскудевает

    4. Загрязнение окружающей среды

    5. Процессы изменения климата

    В перспективе на основе методов рекомбинантных ДНК биотехнология позволит освоить синтез растительных белков и добиться искусственного фотосинтеза и фиксации молекулярного азота в промышленных масштабах, решения экологических проблем, включая переработку отходов и борьбу с загрязнениями окружающей среды. Биологические препараты, практически значимые в растениеводстве, животноводстве, хранении и переработки сельскохозяйственной продукции, приведут к снижению энергоемкости сельскохозяйственного производства, стабильности экологического равновесия и сбалансированному (функциональному) питанию населения. Биотехнология возобновляемого сырья позволит получать продукты питания и производить различные материальные ценности.


    1. Связи биотехнологии с биологическими, химическими, техническими и другими науками.


    Биотехнология возникла на стыке многих наук. Для данной науки свойственна трансдисциплинарность. Фундамент биотехнологии составили такие науки, как микробиология, вирусология, физиология, биохимия, генетика, селекция, цитология, молекулярная биология, генетическая инженерия, клеточная инженерия, энзимология, иммунология, биофизика, экология, медицина, сельскохозяйственные науки, химия, физика, математика, кибернетика и др.

    Можно выделить, по крайней мере, четыре направления, определивших развитие биотехнологии. Прежде всего, это наиболее «старая» область - микробиология.

    Микробиология – наука о микроорганизмах. Микроорганизмы – это мельчайшие организмы, различимые только под микроскопом. Основные преимущества промышленного культивирования микроорганизмов: простота их организации, высокая скорость роста и размножения, большое разнообразие физиологических и биохимических свойств, способность развиваться в условиях непригодных для жизни других организмов, способность разлагать сложные органические соединения (белки, углеводы, в том числе целлюлозу и т.п.), вещества, токсичные для человека и животных (например, метанол, сероводород и т.п.), ксенобиотики (вещества неприродного происхождения).

    На настоящем этапе именно микробиологические процессы в наибольшей степени развиты до уровня промышленного использования. Это, прежде всего, крупнотоннажное производство микробной биомассы, антибиотиков и других лекарственных веществ, аминокислот.

    Второе направление биотехнологии – инженерная энзимологияИнженерная энзимология – это отрасль биотехнологии, базирующаяся на использовании каталитических функций ферментов (или ферментных систем) в изолированном состоянии или в составе живых клеток для получения соответствующих целевых продуктов. Биообъект (в данном случае) – фермент (или комплекс ферментов). На практике обычно используются иммобилизованные ферменты (иммобилизованные клетки), благодаря чему стабилизируется и пролонгируется их ферментативная активность.

    Иногда инженерную энзимологию отождествляют с биотехнологией. В этом содержится большая доля истины, так как все реакции в клетках катализируются ферментами. Однако термин «инженерная» привносит свою специфику , заключающуюся в акценте на создание конструкции, в данном случае – на конструирование биокатализаторов с заданными свойствами с последующим их использованием в биотехнологическом процессе.

    Два других направления биотехнологии – генная инженерия и клеточная инженерия– самые молодые, но очень перспективные области биотехнологии.

    Первое состоит в искусственном конструировании молекул ДНК, несущих всю генетическую информацию о данном организме, т.е. заключающих в себе всю программу его роста и развития. Таким образом, можно направленно влиять на наследственность и получать новые виды с необходимыми свойствами.

    Генетическая инженерия – один из важнейших методов биотехнологии, предполагающий целенаправленное искусственное создание определенных комбинаций генетического материала, способных нормально функционировать в клетке, т.е. размножаться и контролировать синтез конечных продуктов.

    Таким образом, генетическая инженерия включает выделение из клеток отдельных генов или синтез генов вне клеток, направленную перестройку, копирование и размножение выделенных или синтезированных генов, а также их перенос и включение в подлежащий изменению геном и таким путем можно добиться включения в клетки бактерий «чужых» генов и синтеза бактериями важных для человека соединений.

    Развитие генетической инженерии стало возможным благодаря открытию двух ферментов: рестриктаз, разрезающих молекулу ДНК в строго определенных участках и лигаз, сшивающих определенные участки различных молекул ДНК друг с другом. Кроме того, в основе генетической инженерии лежит открытие векторов, которые представляют собой короткие, самостоятельно размножающиеся в клетках бактерий кольцевые молекулы ДНК. С помощью рестриктаз и лигаз в векторы встраивают необходимый ген, добиваясь в последствии его включения в геном клетки-хозяина.

    Различают следующие виды генетической инженерии:

    1. Генная инженерия:её сущность состоит в целенаправленном использовании перестроек естественного генома, осуществляемых in vivo и in vitro, для изменения генетических характеристик известных вирусов и клеток, прямое манипулирование рДНК, включающими отдельные гены.

    2. Геномная инженерия:её сущность заключается в целенаправленной глубокой перестройке генома акариот, прокариот и эукариот, вплоть до создания новых видов, т.е. перенос всего или большей части генетического материала от одной клетки к другой. При геномной инженерии возможно получение половых(слиянием гамет) и соматических (слиянием неполовых клеток) гибридов.

    3. Хромосомная инженериясвязана с переносом изолированных хромосом от клетки-донора одного организма в клетку-реципиент другого организма.

    В основе клеточной инженериилежит культивирование клеток и тканей высших организмов – растений и животных.

    Клеточная инженерия – это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции, базирующийся на использовании методов культуры клеток и тканей. Выделяют два направления развития клеточной инженерии:

    1. использование клеток, переведенных в культуру, для синтеза различных соединений;

    2. применение культивируемых клеток для получения из них растений-регенератов.

    Растительные клетки в культуре – это важный источник ценнейших природных веществ, т.к. они сохраняют способность синтезировать свойственные им соединения: алкалоиды, эфирные масла, смолы, биологически активные вещества и т.п. Например, клетки женьшеня, переведенные в культуру, продолжают синтезировать, как и в составе целостного растения, ценное лекарственное сырье. Причем в культуре с клетками легче проводить любые манипуляции, используя индуцированный мутагенез, можно повышать продуктивность штаммов культивируемых клеток и проводить их гибридизацию гораздо проще, чем на уровне целостного организма. Кроме того, с ними, как и с прокариотическими клетками, можно проводить генно-инженерные работы.

    Таким образом, клеточная инженерия позволяет конструировать клетки нового типа, комбинировать отдельные фрагменты клеток (ядра, митохондрии, пластиды, цитоплазму и хромосомы и т.п.), соединять клетки различных видов, относящиеся не только к разным родам, семействам, но и царствам.

    Клеточная инженерия широко используется в селекции растений. Выделены гибриды томата и картофеля, яблони и вишни. Регенерированные из таких клеток растения с измененной наследственностью позволяют синтезировать новые формы, сорта, обладающие новыми свойствами и устойчивые к неблагоприятным условиям среды и болезням. Этот метод широко используется и для «спасения» ценных сортов, пораженных вирусными болезнями.
    Биотехнологические направления имеют своей целью создание и практическое внедрение (т. е. практическое использование):

    • новых биологически активных веществ и лекарственных препаратов, используемых в здравоохранении для диагностики, профилактики и лечения различных заболеваний;

    • биологических средств защиты сельскохозяйственных растений от возбудителей заболеваний и вредителей, бактериальных удобрений и регуляторов роста растений и животных; новых сортов растений, устойчивых к разного рода неблагоприятным воздействиям (факторам внешней среды); новых пород животных с полезными свойствами (трансгенные животные);

    • ценных кормовых добавок для повышения продуктивности сельскохозяйственных животных (кормового белка, аминокислот, витаминов, ферментов, способствующих повышению усвояемости кормов, и т. п.);

    • новых биоинженерных методов для получения высокоэффективных препаратов различного назначения, используемых в сельском хозяйстве и ветеринарии;

    • новых технологий создания и получения хозяйственно ценных продуктов для пищевой, химической и микробиологической промышленности;

    • эффективных технологий переработки сельскохозяйственных, промышленных и бытовых отходов для получения продуктов, которые могут использоваться в других отраслях хозяйственной деятельности человека (например, биогаза, удобрений, топлива для автомобилей и т. п.).


    1.   1   2   3   4   5


    написать администратору сайта