Главная страница
Навигация по странице:

  • 23. Микроорганизмы как основные объекты биотехнологии. Модельные и базовые штаммы.

  • Модельные

  • 24. Влияние внешних факторов на развитие микробной культуры: температура и давление. Температура

  • Действие высоких температур на микроорганизмы.

  • Влияние низких температур на микроорганизмы.

  • 25. Влияние внешних факторов на развитие микробной культуры: отношение к кислороду и рН. Отношение микроорганизмов к молекулярному кислороду

  • 26. Роль источников углерода и источника энергии в развитии культур микроорганизмов.

  • Биотехнология как межотраслевая область научнотехнического прогресса и раздел практических знаний, этапы ее развития


    Скачать 334.5 Kb.
    НазваниеБиотехнология как межотраслевая область научнотехнического прогресса и раздел практических знаний, этапы ее развития
    Дата07.01.2022
    Размер334.5 Kb.
    Формат файлаdoc
    Имя файлаbt_otvety.doc
    ТипДокументы
    #325417
    страница4 из 5
    1   2   3   4   5

    22. Критерии при выборе биотехнологического объекта.
    Классический подход заключается в выделении нужного микроорганизма из природных условий. Из естественных мест обитания предполагаемого продуцента отбирают образцы материала (берут пробы материала) и производят посев в элективную среду, обеспечивающую преимущественное развитие интересующего микроорганизма, т. е. получают так называемые накопительные культуры. Следующим этапом является выделение чистой культуры с дальнейшим дифференциально-диагностическим изучением изолированного микроорганизма и, в случае необходимости, ориентировочным определением его продукционной способности.

    Существует и другой путь подбора микроорганизмов-продуцентов – это выбор нужного вида из имеющихся коллекций хорошо изученных и досконально охарактеризованных микроорганизмов. При этом, естественно, устраняется необходимость выполнения ряда трудоемких операций.

    Главным критерием при выборе биотехнологического объекта (в нашем случае микроорганизма-продуцента) является способность синтезировать целевой продукт. Однако помимо этого, в технологии самого процесса могут закладываться дополнительные требования, которые порой бывают очень и очень важными, чтобы не сказать решающими.

    В общих словах микроорганизмы должны:

    • обладать высокой скоростью роста;

    • утилизировать необходимые для их жизнедеятельности дешевые субстраты;

    • быть резистентными к посторонней микрофлоре, т. е. обладать высокой конкурентоспособностью.

    Все вышеперечисленное обеспечивает значительное снижение затрат на производство целевого продукта. Конечно, в каждом конкретном случае ведущим является какой-то один из этих критериев, поскольку в природе устроено так, что во всем получить выигрыш не удается никогда. И это правило необходимо постоянно иметь в виду. Ниже приводятся примеры, имеющие своей целью проиллюстрировать ранее сказанное.

    1.Одноклеточные организмы, как правило, характеризуются более высокими скоростями роста и синтетических процессов, чем высшие организмы. Тем не менее это присуще не всем микроорганизмам. Существуют такие из них (например, олиготрофные), которые растут крайне медленно, однако они представляют известный интерес, поскольку способны продуцировать различные очень ценные вещества.

    2. Особое внимание как объекты биотехнологических разработок представляют фотосинтезирующие микроорганизмы, использующие в своей жизнедеятельности энергию солнечного света. Часть из них (цианобактерии и фотосинтезирующие эукариоты) в качестве источника углерода утилизируют СО2, а некоторые представители цианобактерий, ко всему сказанному, обладают способностью усваивать атмосферный азот (т. е. являются крайне неприхотливыми к питательным веществам). Фотосинтезирующие микроорганизмы перспективны как продуценты аммиака, водорода, белка и ряда органических соединений. Однако пpoгpecca в их использовании вследствие ограниченности фундаментальных знаний об их генетической организации и молекулярно-биологических механизмах жизнедеятельности, по всей видимости, следует ожидать не в скором будущем.

    3. Определенное внимание уделяется таким объектам биотехнологии, как термофильные микроорганизмы, растущие при 60–80° С. Это их свойство является практически непреодолимым препятствием для развития посторонней микрофлоры при относительно не стерильном культивировании, т. е. является надежной защитой от загрязнений. Среди термофилов обнаружены продуценты спиртов, аминокислот, ферментов, молекулярного водорода. Кроме того, скорость их роста и метаболическая активность в 1,5–2 раза выше, чем у мезофилов.
    23. Микроорганизмы как основные объекты биотехнологии. Модельные и базовые штаммы.
    В качестве объектов биотехнологии могут выступать: клетки микроорганизмов, животных и растений, трансгенные животные и растения, а также многокомпонентные ферментные системы клеток и отдельные ферменты.

    Основой большинства современных биотехнологических производств является микробный синтез, т. е. синтез разнообразных БАВ с помощью микроорганизмов. Независимо от природы объекта, первичным этапом разработки любого биотехнологического процесса является получение чистых культур организмов (если это микробы), клеток или тканей (если это более сложные организмы - растения или животные). Многие этапы дальнейших манипуляций с последними (т. е. с клетками растений или животных) являются принципами и методами, используемыми в микробиологических производствах. И культуры микробных клеток, и культуры тканей растений и животных с методической точки зрения практически не отличаются от культур микроорганизмов. Мир микроорганизмов крайне разнообразен. В н. время известно более 100 тысяч различных их видов. Это прокариоты (бактерии, актиномицеты, риккетсии, цианобактерии) и часть эукариот (дрожжи, нитчатые грибы, некоторые простейшие и водоросли). При большом разнообразии микроорганизмов важной проблемой является правильный выбор того организма, который способен обеспечить получение требуемого продукта, т. е. служить промышленным целям. Микроорганизмы:

    1)Промышленные: кишечная палочка (Е. coli), сенная палочка {Вас. sub-tilis) и пекарские дрожжи (S. cerevisiae). Обычно явл-ся сверхпродуцентами. Для получения сверхпродуцентов проводят генетико-селекционную работу, генно-инженерные подходы( внедрение генов челов. В бактерию: гены интерферонов,инсулина и т.д). ПШ д.быть запатентованы.

    2)Базовые- используется в ограниченном числе, классифицируются как GRAS ("generally recognized as safe" обычно считаются безопасными)- бактерии Bacillussubtilis, Bacillusamylolique-faciens, др. виды бацилл и лактобацилл, виды Streptomyces, грибы Aspergillus, Penicillium, Mucor, Rhizopus, дрожжи Saccharomyces и др. GRAS-микроорганизмы непатогенные, нетоксичные и в основном не образуют антибиотики, поэтому при разработке нового биотехнологического процесса следует ориентироваться на данные микроорганизмы,.

    3) Модельные - служат модельными объектами при изучении фундаментальных жизненных процессов. бациллы (продуценты протеолитических ферментов).Есть каталоги модельных микр.

    Главным критерием при выборе биотехнологического объекта является способность синтезировать целевой продукт. микроорганизмы должны (требования):

    • обладать высокой скоростью роста;

    • утилизировать необходимые для их жизнедеятельности дешевые субстраты;

    • быть резистентными к посторонней микрофлоре, т. е. обладать высокой конкурентоспособностью. (требования):способность к росту на дешевых субстратах, выс.экономич.коэф-т, миним-е образов-е побочных прод-в(токсич-х метаболитов, аллергенов)

    Все вышеперечисленное обеспечивает значительное снижение затрат на производство целевого продукта. Ниже приводятся примеры, имеющие своей целью проиллюстрировать ранее сказанное.

    1. Одноклеточные организмы характеризуются более высокими скоростями роста и синтетических процессов,

    2. Особое внимание как объекты биотехнологических разработок представляют фотосинтезирующие микроорганизмы, использующие в своей жизнедеятельности энергию солнечного света.

    3. термофильные микроорганизмы, растущие при 60-80 °С. Это их свойство является практически непреодолимым препятствием для развития посторонней микрофлоры

    24. Влияние внешних факторов на развитие микробной культуры: температура и давление.
    Температура - один из основных факторов, определяющих возможность и интенсивность размножения микроорганизмов.

    Микроорганизмы могут расти и проявлять свою жизнедеятельность в определенном температурном диапазоне, и в зависимости от отношения к температуре делятся на психрофилы, мезофилы и термофилы.

    Группа микроорганизмов

    Т(°С)

    миним.

    Т(°С) максим.

    Т(°С) оптим.

    Отдельные представители

    1.Психрофилы (холодолюбивые)

    (+10)-(-2)

    около +30

    10-15

    Бактерии, обитающие в холодильниках, морские бактерии

    2. Мезофилы

    5-10

    45-50

    25-40

    Большинство грибов, дрожжей, бактерий

    3.Термофилы (теплолюбвые)

    около 30

    70-80

    50-60

    Бактерии, обитающие в горячих источниках. Большинство образуют устойчивые споры

    Действие высоких температур на микроорганизмы. Повышение температуры выше максимальной может привести к гибели клеток. Гибель микроорганизмов наступает не мгновенно, а во времени. При незначительном повышении температуры выше максимальной микроорганизмы могут испытывать «тепловой шок» и после недлительного пребывания в таком состоянии они могут реактивироваться.

    Механизм губительного действия высоких температур связан с денатурацией клеточных белков. На температуру денатурации белков влияет содержание в них воды (чем меньше воды в белке, тем выше температура денатурации). Молодые вегетативные клетки, богатые свободной водой погибают при нагревании быстрее, чем старые, обезвоженные.

    Термоустойчивость - способность микроорганизмов выдерживать длительное нагревание при температурах, превышающих температурный максимум их развития.

    Гибель микроорганизмов наступает при разных значениях температур и зависит от вида микроорганизма. Так, при нагревании во влажной среде в течение 15 мин при температуре 50-60 °С погибает большинство грибов и дрожжей; при 60-70 °С - вегетативные клетки большинства бактерий, споры грибов и дрожжей уничтожаются при 65-80° С. Наибольшей термоустойчивостью обладают вегетативные клетки термофилов (90-100 °С) и споры бактерий (120 °С).

    Высокая термоустойчивость термофилов связана с тем, что, во первых, белки и ферменты их клеток более устойчивы к температуре, во вторых, в них содержится меньше влаги. Кроме того, скорость синтеза различных клеточных структур у термофилов выше скорости их разрушения.

    Термоустойчивость спор бактерий связана с малым содержанием в них свободной влаги, многослойнойоболочкой, в состав которой входит кальциевая сольдипиколиновой кислоты.

    На губительном действии высоких температур основаны различные методы уничтожения микроорганизмов в пищевых продуктах. Это кипячение, варка, бланширование, обжарка, а также стерилизация и пастеризация. Пастеризация – процесс нагревания до 100˚С при котором происходит уничтожение вегетативных клеток микроорганизмов. Стерилизация - полное уничтожение вегетативных клеток и спор микроорганизмов. Процесс стерилизации ведут при температуре выше 100 °С.

    Влияние низких температур на микроорганизмы. К низким температурам микроорганизмы более устойчивы, чем к высоким. Несмотря на то, что размножение и биохимическая активность микроорганизмов при температуре ниже минимальной прекращается, гибели клеток не происходит, т. к. микроорганизмы переходят в состояние анабиоза (скрытой жизни) и остаются жизнеспособными длительное время. При повышении температуры клетки начинают интенсивно размножаться.

    Причинами гибели микроорганизмов при действии низких температурявляются:

    • нарушение обмена веществ;

    • повышение осмотического давления среды вследствие вымораживания воды;

    • в клетках могут образоваться кристаллики льда, разрушающие клеточную стенку.

    Низкая температура используется при хранении продуктов в охлажденном состоянии (при температуре от 10 до -2 °С) или в замороженном виде (от -12 до -30 °С).

    Микроорганизмы устойчивы к высоким давлениям. Микробы обнаружены на дне глубоких морей и океанов, где давление достигает более 90 МПа, некоторые дрожжи, плесневые грибы выдерживают давление 300 Мпа.
    25. Влияние внешних факторов на развитие микробной культуры: отношение к кислороду и рН.

    Отношение микроорганизмов к молекулярному кислороду определяется набором окислительно-восстановительных ферментов, входящих в состав клетки. В зависимости от способа получения энергии и от конечного акцептора водорода (электронов) микроорганизмы можно подразделить на три физиологические группы по отношению к молекулярному кислороду: облигатные аэробы, облигатные анаэробы и факультативные (условные) анаэробы.

    Облигатные (строгиеаэробы растут только в присутствии 02. К ним относится часть автотрофных и большинство гетеротрофных микроорганизмов (например, уксуснокислые, многие гнилостные бактерии, актиномицеты, мицелиальные грибы и некоторые дрожжи). Среди облигатных аэробов встречаются микроаэрофилы, лучше всего развивающиеся при низких концентрациях 02 (около 2%). Аэробные гетеротрофные микроорганизмы окисляют органические вещества в присутствии молекулярного кислорода, который является конечным акцептором водорода. Автотрофы окисляют минеральные вещества путем прямого присоединения кислорода.

    Анаэробам для развития не требуется присутствия 02, и их энергетические и конструктивные процессы протекают без участия молекулярного кислорода. Конечными акцепторами водорода служат органические и неорганические вещества. Анаэробы подразделяют на облигатные и факультативные. Облигатные анаэробы не переносят даже ничтожных количеств 02 в среде и быстро погибают: для них кислород токсичен. К строгим анаэробам относятся маслянокислые бактерии, возбудитель тяжелого пищевого отравления — ботулизма и др.

    Факультативные анаэробы могут расти как в присутствии, так и в отсутствие 02, например бактерии кишечной группы, молочнокислые бактерии, большинство дрожжей, некоторые гнилостные бактерии.

    Дегидрогеназы имеются абсолютно у всех микроорганизмов. Цитохромы есть у аэробов и факультативных анаэробов, но никогда не встречаются у строгих анаэробов. Цитохромоксидаза имеется только у аэробов, поэтому они могут осуществить полное окисление до С02 и Н20.

    В зависимости от отношения к кислотности среды бактерии могут быть разделены на несколько групп:

    1) нейтрофилы– типичными нейтрофилами являются штаммы бактерий Escherichiacoli, Bacillusmegaterium, Streptococcusfaecalis и др.;

    2) ацидофилы– типичными представителями облигатных ацидофилов служат бактерии родов ThiobacillusSulfolobusAcetobacter и др.;

    3) алкалофилы– среди алкалофилов различают факультативныеалкалофилы (интервал рН для роста 5–11), к которым относятся нитратвосстанавливающие и сульфатвосстанавливающие бактерии, многие аммонификаторы. Облигатныеалкалофилы растут при высоких значениях рН – 8,5–11,0. К таким бактериям относятся Bacilluspasteurii, некоторые цианобактерии и др.

    26. Роль источников углерода и источника энергии в развитии культур микроорганизмов.
    Источники питания должны обеспечивать микроорганизмы всеми элементами для синтеза различных клеточных структур, а также источниками энергии, необходимой не только для биосинтетических процессов, но и для других энергозависимых процессов, характерных для микробной клетки, как в стадии активного роста, так и в покоящейся стадии. Микроорганизмам, как и другим организмам, нужна вода, углерод, азот, фосфор, сера и другие элементы в макро- и микродозах. Отдельным микроорганизмам необходимы некоторые органические соединения.

    Пища должна содержать такие вещества, которые удовлетворяли бы потребность микроорганизмов в химических элементах, входящих в состав их тела.

    Микроорганизмы отличаются большим разнообразием типов питания. Одни питаются, подобно зеленым растениям, минеральными веществами, синтезируя из этих простых веществ все сложные компоненты клетки. Другие микроорганизмы, подобно животным организмам, нуждаются в органических соединениях.

    Углерод относится к числу важнейших органогенов и, как указывалось, составляет около 50 % сухой массы клетки. По источнику углеродного питания микроорганизмы можно разделить на две группы: автотрофные и гетеротрофные.

    Автотрофные (сами себя питающие) микроорганизмы способны в качестве единственного источника углерода для синтеза органических веществ тела использовать углекислоту и ее соли.

    Синтез органических веществ из минеральных соединений требует затраты энергии. Среди автотрофных микроорганизмов имеются виды, которые ассимилируют углекислый газ, как и зеленые растения, используя солнечную энергию, - их называют фотосинтезирующими. Другие автотрофные микроорганизмы в процессе синтеза органических соединений используют энергию химических реакций окисления некоторых минеральных веществ. Такие микроорганизмы называют хемосинтезирующими.

    К фотосинтезирующим микроорганизмам относятся водоросли, обладающие хлорофиллом, и некоторые пигментные бактерии, например зеленые и пурпурные серобактерии. В клетках пурпурных бактерий находится зеленый пигмент бактериохлорофилл, сходный с хлорофиллом высших растений. В клетках зеленых бактерий также находится в небольшом количестве бактериохлорофилл, но имеется и другой фотосинтетический пигмент (хлоробиум - хлорофилл), химическая природа которого пока не установлена.

    1   2   3   4   5


    написать администратору сайта