Главная страница
Навигация по странице:

  • 9.1. Режим Volume Control в респираторах с расширенными функциями

  • 9.2. Режим Pressure Control в респираторах с расширенными функциями

  • 9.3. Режимы Pressure Support, CPAP, BIPAP и APRV, двойные режимы и серворежимы в респираторах с расширенными функциями

  • 9.4. Отлучение от респиратора

  • 9.5. Использование графического анализа

  • Глава 10. Проведение ИВЛ респираторами высшего класса

  • 10.1. Анализ дыхательных кривых

  • 10.1.1. Оценка соответствия работы респиратора потребностям больного Оценка эффективности триггирования

  • Подбор оптимального отношения вдоха к выдоху

  • Подбор скорости доставки вдоха, адекватной потребностям больного

  • Оценка достаточности создаваемого давления поддержки

  • Диагностика нарушений экспираторного паттерна

  • 10.1.2. Раздельная оценка податливости легких и грудной клетки

  • 10.1.3. Подбор оптимальной скорости пикового потока

  • 10.1.4. Диагностика непреднамеренного ауто-РЕЕР

  • 10.2. Построение кривой (петли) статической податливости

  • 10.3. Режим Pressure Support в респираторах высшего класса

  • 10.4. Режим BIPAP в респираторах высшего класса

  • 10.5. Другие режимы вентиляции в респираторах высшего класса

  • Царенко С.В. - Практический курс ИВЛ. Царенко С. В. Практический курс ивл


    Скачать 0.72 Mb.
    НазваниеЦаренко С. В. Практический курс ивл
    АнкорЦаренко С.В. - Практический курс ИВЛ.pdf
    Дата10.03.2018
    Размер0.72 Mb.
    Формат файлаpdf
    Имя файлаЦаренко С.В. - Практический курс ИВЛ.pdf
    ТипДокументы
    #16479
    страница6 из 10
    1   2   3   4   5   6   7   8   9   10
    Глава 9.Проведение ИВЛ респираторами с расширенными функциями
    Самой заметной внешней характеристикой респираторов с расширенными функциями является наличие дисплея. Благодаря дисплею можно изучать графики кривых объема, потока и давления в дыхательных путях. Визуальное представление информации позволяет быстрее и легче обнаружить несинхронность работы аппарата ИВЛ и дыхания больного, диагностировать ауто-РЕЕР,
    подобрать лучшую форму дыхательного потока.
    Для соответствия параметров механического вдоха потребностям больного у респираторов данной группы значительно улучшен процесс триггирования. Более качественное триггирование достигается за счет улучшения технических характеристик триггера и (или) наличия датчиков потока в двух местах дыхательного контура: на вдохе и выдохе.
    Существенное значение для повышения качества ИВЛ приобретает такое изящное техническое решение, как применение активного клапана выдоха. Активный клапан имеется в ряде моделей этого класса, а также в респираторах высшей категории. Использование более простого пассивного клапана выдоха подразумевает открытие его струей выдыхаемого больным воздуха, что делает его достаточно инертным. Активный экспираторный клапан позволяет исключить малейшую задержку выдоха, поскольку его открытие регулируется микропроцессором и происходит незамедлительно после окончания вдоха. Независимая друг от друга работа клапанов вдоха и выдоха дает возможность респиратору подстроиться под дыхательный паттерн больного (рис. 9.1).
    Описанная способность максимально реализована в респираторах следующей, высшей категории в виде так называемого виртуального Pressure Support. В респираторах с расширенными функциями появляется возможность автоматического измерения сопротивления дыхательных путей и динамической податливости, а также определения показателя Р
    01
    . Проведение этих измерений оптимизирует режимы ИВЛ с учетом механических свойств легких больного.
    Рис. 9.1. Сравнение пассивного и активного клапана выдоха. В базовых моделях с пассивным клапаном выдоха (слева) попытки больного дышать во время незакончившегося механического вдоха не сопровождаются соответствующими изменениями дыхательного потока, поэтому приводят к повышению давления в дыхательных путях. В более совершенных моделях активный клапан выдоха
    (справа) позволяет каждую попытку больного сопроводить изменениями дыхательного потока.
    9.1. Режим Volume Control в респираторах с расширенными функциями
    При реализации указанного режима становится возможным обеспечить более безопасную вентиляцию. Для этого врач устанавливает два ограничения верхнего давления в дыхательных путях.
    Одно из них - уже знакомая тревога Р
    mах с обычными значениями 30 см вод. ст. Второе ограничение -

    P
    insp обычно устанавливается ниже Р
    mах на 10 - 15 см вод. ст. Остальные параметры режима - дыхательный объем, частота дыхания, форма и скорость пикового потока, длительность паузы вдоха,
    чувствительность триггера - ничем не отличаются от установок в базовых моделях. Время вдоха зависит от заданной величины дыхательного объема и податливости легких.
    Величина P
    insp ограничивает давление в дыхательных путях во время стандартной подачи механического вдоха, а величина Р
    mах является дополнительной страховкой от резких колебаний давления, например при кашле больного. Если податливость легких такова, что при подаче объемного вдоха пиковое давление не достигает установленной величины P
    insp
    , то вдох ничем не отличается от обычного Volume Control. При ухудшении податливости подаваемый машинный вдох создает большее давление в дыхательных путях, величина которого ограничивается установкой P
    insp
    При этом некоторые респираторы способны самостоятельно удлинять время вдоха, что обеспечивает заданный врачом дыхательный объем. Указанная особенность режима позволила некоторым производителям называть его также Pressure Limited Ventilation, что вносит очевидную терминологическую путаницу.
    9.2. Режим Pressure Control в респираторах с расширенными функциями
    Для улучшения совпадения дыхательного паттерна больного и работы респиратора при проведении вентиляции в режиме Pressure Control рассматриваемыми моделями предусмотрена возможность изменения скорости и профиля инспираторного потока. Для этого врач меняет наклон кривой давления. Нулевым положением считается наклон, соответствующий перпендикулярному положению восходящего колена кривой по отношению к изолинии - угол 90° (рис. 9.2). Изменение наклона в положительную сторону уменьшает угол вплоть до 45°. Такая величина обычно используется при низкой податливости легких для того, чтобы улучшить распределение в них поступающей дыхательной смеси.
    Рис. 9.2. Возможность изменения наклона кривой давления в режимах вентиляции "по давлению".
    Для пациентов с ХОБЛ положение наклона можно изменить в отрицательную сторону.
    Очевидно, что отрицательная величина является виртуальной. Сделать угол наклона кривой по отношению к изолинии больше чем 90° буквально означает, что время достижения заданного давления в дыхательных путях должно наступить раньше, чем был начат вдох. Поскольку время даже в самых современных респираторах двигаться в обратную сторону не может, то отрицательная величина наклона кривой давления означает, что респиратор просто значительно увеличивает скорость подачи дыхательного потока. Для больных с ХОБЛ такая ситуация является благоприятной,
    так как позволяет удлинить время, остающееся для выдоха.
    Для подбора оптимального наклона кривой давления полезно использовать показатель Р
    0,1
    Указанная величина отражает давление в контуре респиратора, регистрируемое при создании в начале вдоха окклюзии длительностью 100 мс (0,1 с). Такая длительность окклюзии выбрана по двум причинам. Во-первых, за это время нет существенных изменений инспираторного потока. Во-вторых,
    больной "не замечает" окклюзию такой длительности (обычное время реакции пациента на препятствие вдоху- 150 мс). Чем больше респираторные усилия больного, тем ниже Р
    0,1
    (иными словами, больше модуль этой отрицательной величины). Оптимальная величина - не меньше минус
    3,5 см вод. ст.

    9.3. Режимы Pressure Support, CPAP, BIPAP и APRV, двойные режимы и серворежимы в
    респираторах с расширенными функциями
    Реализация режимов Pressure Support и CPAP в респираторах с расширенными функциями и в базовых моделях существенно не отличается. Наличие активного клапана выдоха, открытие и закрытие которого регулируются независимо от клапана вдоха, позволяет проводить ИВЛ с двумя уровнями давления в дыхательных путях и в двойных режимах. Развитие микропроцессорной техники и создание чувствительных датчиков потока и давления позволяют реализовы-вать режимы с обратной связью - серворежимы. Детали проведения вентиляции в указанных режимах были рассмотрены в главе 4.
    9.4. Отлучение от респиратора
    При использовании моделей с расширенными функциями для отлучения от респиратора можно применять обычные подходы: как Т-образный коннектор, так последовательное снижение машинной поддержки дыхания в алгоритме SIMV, постепенно уменьшая число обязательных вдохов и величину давления во вдохах по требованию. В ряде случаев удобным для целей отлучения является применение серворежимов.
    9.5. Использование графического анализа
    Графический анализ необходим не только для понимания деталей реализации различных режимов, но и для решения клинических задач. Среди ситуаций, при которых анализ кривых давления, потока и объема позволяет принять правильное решение, наиболее часты следующие:
    • оценка эффективности триггирования;
    • подбор оптимального отношения вдоха к выдоху;
    • подбор адекватной потребностям больного скорости доставки вдоха;
    • диагностика нарушений экспираторного паттерна;
    • диагностика нарушений податливости дыхательной системы и сопротивления дыхательных путей.
    Все перечисленные клинические задачи в большинстве случаев лучше решаются, если есть возможность анализа кривой пищеводного давления, поэтому подробно они будут рассмотрены в следующей главе.

    Глава 10. Проведение ИВЛ респираторами высшего класса
    В современных респираторах стандартные режимы получили новое рождение. Основные "виновники" - чувствительные триггеры и усовершенствованный интеллект машины.
    Непосредственным механизмом реализации модернизации является использование виртуального
    Pressure Support. Как это происходит, рассмотрим на примере режима Volume Control.
    В стандартном режиме Volume Control во время механического вдоха работа респиратора не меняется в зависимости от наличия или отсутствия спонтанного дыхания пациента: аппарат "не замечает" его. В модернизированном Volume Control респиратор все время "следит" за дыханием пациента. Указанное слежение реализуется особым образом. В начале вдоха аппарат измеряет моментальное пиковое инспираторное давление в дыхательных путях, которое является результатом подачи заданного дыхательного объема с установленной скоростью потока (set V
    peak
    ) в легкие больного. Учитывая тот факт, что вдох происходит методом вдувания, сила давления направлена снаружи внутрь: из атмосферы в дыхательные пути больного. Измерения повторяются каждые 1-2
    мс. Если пациент начинает спонтанный вдох, то он втягивает воздух в дыхательные пути и создает в них разрежение. Вследствие этого отмечается снижение моментального пикового давления.
    Респиратор сравнивает новое давление с предшествующим и в том случае, если разница давлений превышает 2 см вод. ст.; машина делает вывод, что необходимо помочь этому вдоху. Аппарат включает виртуальный PSV. Величина давления поддержки вдоха в виртуальном Pressure Support составляет: минимально - плюс 2 см вод. ст. к уровню установленного PEEP, максимально - двойной уровень PEEP (или пиковое давление вдоха минус 2 см вод. ст.). При этом начинает поступать дополнительный поток, который выше установленного и удовлетворяет потребностям больного.
    Следующие 2 мс процедура повторяется.
    Если во время подачи дыхательной смеси пациент пытается сделать выдох, то он создает силу давления, направленную навстречу потоку, продуцируемому респиратором. В результате моментальное пиковое давление в дыхательных путях повышается. Респиратор сравнивает новое давление с предшествующим и делает вывод, что необходимо уменьшить поддержку вдоха.
    При достижении респиратором поставленной перед ним задачи - определенного дыхательного объема, аппарат сравнивает реальный пиковый поток с set V
    peak
    . Если реальный пиковый поток выше set V
    peak
    , то респиратор понимает, что пациент продолжает делать вдох. В этом случае, согласно правилам Pressure Support, вдох продолжается и прекращается только тогда, когда скорость потока вдуваемого воздуха снижается до 25% от пиковой. Если реальный пиковый поток равен или ниже set V
    peak
    , то респиратор воспринимает это как отсутствие дыхания пациента и заканчивает вдох так, как это делается обычно в режиме Volume Control.
    Описанное "отслеживание" дыхательного паттерна больного происходит и во время выдоха.
    Виртуальный Pressure Support заложен во все режимы вентиляции, реализуемые респираторами высшего класса. Кроме описанных особенностей, респираторы этого класса обладают еще рядом дополнительных возможностей.
    10.1. Анализ дыхательных кривых
    Измерение давления датчиком, расположенным на уровне карины трахеи, позволяет изучать аэродинамику дыхательной системы без учета влияния интубационной или трахеостомической трубки. Весьма информативным является также мониторинг давления в нижней трети пищевода,
    позволяющий оценивать изменения плеврального давления.
    Изучение абсолютных величин и синхронности изменений давления, измеренного в пищеводе (P
    es
    ), в трахее (P
    tr
    ) и возле Y-образного соединения у наружного конца интубационной трубки (P
    aw
    ), а также колебаний дыхательного потока и объема позволяет решить ряд важных клинических задач. Задачи эти следующие.

    10.1.1. Оценка соответствия работы респиратора потребностям больного
    Оценка эффективности триггирования. Попытка спонтанного вдоха вначале регистрируется на кривой пищеводного давления - первая временная точка (рис. 10.1). Затем отмечается снижение
    P
    aw
    (вторая временная точка) и только потом - изменение кривых потока и объема (третья временная точка). Время между первым и вторым событием, а также величина колебаний пищеводного давления прямо пропорциональны работе больного, затрачиваемой на преодоление внутреннего
    PEEP. Время между второй и третьей точкой зависит от быстроты отклика респиратора на дыхательную попытку.
    Рис. 10.1. Отклик респиратора на дыхательную попытку больного. а, б - время от начала дыхательной попытки до достижения порога триггирования; б, в - время отклика респиратора на преодоление порога триггирования; в, г - время от начала подачи вдоха до достижения желаемой скорости потока.
    Сравнительный анализ кривых P
    es
    , P
    aw и потока позволяет также точно установить, сколько дыхательных попыток больного завершились подачей механического вдоха, а сколько "пропали даром" (рис. 10.2). Уменьшить число "пропавших" попыток можно разными способами. Самый простой подход - увеличить чувствительность триггера. Однако иногда возможны и нестандартные решения. Например, избыточная величина давления в режиме Pressure Support удлиняет механический вдох, что приводит к неэффективности следующей дыхательной попытки,
    наступающей слишком рано. В этой ситуации можно увеличить порог переключения с вдоха на выдох с 25 до 40 -50%, а можно просто уменьшить величину давления поддержки (рис. 10.3). Также облегчают триггирование своевременная диагностика и компенсация внутреннего PEEP. Очевидно,
    что столь нестандартные решения можно принимать только на основе графического анализа.

    Рис. 10.2. Анализ кривых потока, давления в пищеводе и в дыхательных путях у пациента с ХОБЛ [Georgopoulos D. et al., 2006]. Тонкие сплошные стрелки - неэффективные дыхательные попытки, характеризующиеся значительной отрицательной амплитудой на кривой пищеводного давления и "зазубринами" на кривых давления в дыхательных путях и потока. Толстые незакрашенные стрелки - резкое снижение экспираторного потока и искажение формы его кривой из-за появления инспираторных попыток больного. Можно также заметить значительную задержку между моментом появления искажения на кривой потока и началом механического вдоха на кривой давления в дыхательных путях. Толстые закрашенные стрелки - большая начальная амплитуда (спайк) экспираторного потока, свидетельствующая о наличии ограничений для выдоха.
    Рис. 10.3. Улучшение триггирования в режиме Pressure Support при уменьшении величины давления поддержки и изменение чувствительности триггера
    [Georgopoulos D. et al., 2006]. а - слишком высокое давление поддержки удлиняет время вдоха и приводит к появлению неэффективных дыхательных попыток во время вдоха (толстая стрелка). Недостаточная чувствительность триггера является причиной нетриггированных дыхательных попыток во время выдоха (тонкие стрелки); б - все дыхательные попытки больного поддержаны режимом Pressure
    Support.

    Анализ кривых P
    es
    , P
    aw и потока позволяет выявить такие причины аутоциклирования, как кардиогенные осцилляции и скопление избыточного количества секрета в контуре респиратора (рис.
    10.4).
    Рис. 10.4. Аутоциклирование в режиме Pressure Support [Georgopoulos D. et al.,
    2006]. Высокочастотные колебания давления, которые лучше видны на кривой пищеводного давления, приводящие к появлению второго механического вдоха в отсутствие Дыхательной попытки больного. Первый и третий вдохи триггированные. Видна различная форма триггированных вдохов и нетриггированного. Причина высокочастотных колебаний - скопление воды в контуре или высокий ударный объем сердца.
    Подбор оптимального отношения вдоха к выдоху. Анализ кривой потока позволяет диагностировать незавершенность выдоха: кривая не возвращается к нулевой отметке.
    Следовательно, отношение вдоха к выдоху слишком велико. Иными словами, вдох слишком длинный, чтобы осталось время для выдоха. Описываемая ситуация приводит к развитию ауто-РЕЕР.
    График потока в этом случае напоминает таковой при аутоциклировании из-за утечек по контуру
    (рис. 10.5).
    Рис. 10.5. Один из признаков наличия ауто-РЕЕР - незавершенность выдоха: кривая экспираторного потока не доходит до нуля (обозначено стрелкой).

    Длительность механического вдоха, не соответствующая потребностям больного, вызывает еще ряд проблем. Слишком большое установленное время вдоха приводит к тому, что больной пытается дышать самостоятельно во время незавершенного вдоха. При слишком коротком времени вдоха больной начинает вдыхать во время незавершенного выдоха (рис. 10.6).
    Рис. 10.6. Несоответствие длительности механического вдоха потребностям больного [Maclntyre N., Branson R., 2001]. а - слишком короткий вдох (больной начинает вдыхать во время незавершенного выдоха); б - слишком длинный вдох
    (больной начинает вдыхать во время незавершенного вдоха). Преждевременные дыхательные попытки обозначены стрелками.
    Неоправданно короткое время вдоха может вызвать также двойное триггирование из-за продолжающейся инспираторной попытки в то время, когда респиратор окончил механический вдох и открыл экспираторный клапан (рис. 10.7).
    Рис. 10.7. Двойное триггирование [Georgopoulos D. et al., 2006].

    Время вдоха в режиме Volume Control неоправданно короткое. Первая дыхательная попытка вызывает задержку экспираторного потока и искажение формы кривой давления в дыхательных путях (тонкая стрелка). Вторая дыхательная попытка вызывает достаточное для повторного триггирования снижение давления в дыхательных путях (толстая стрелка).
    Подбор скорости доставки вдоха, адекватной потребностям больного. При отсутствии графического монитора соответствие режима подачи механического вдоха и дыхательного паттерна больного оценивают путем простого наблюдения за пациентом. Скорость изменения пикового потока подбирают по комфортности ощущений больного и ритмичности его дыхания. Более тонкая регуляция возможна при графическом анализе кривых давления и потока. При проведении ИВЛ в режиме Volume Control оптимальной является такая скорость, которая обеспечивает практически вертикальный подъем кривой давления в дыхательных путях (рис. 10.8).
    Рис. 10.8. Оптимальность респираторной поддержки при проведении ИВЛ в режиме Volume Control. а - скорость пикового потока недостаточная, что проявляется большим отрицательным давлением на кривой Р
    es
    ; б - увеличение скорости пикового потока сопровождается уменьшением отрицательной "впадины" на кривой пищеводного давления. Однако скорости потока недостаточно, так как на кривой давления в дыхательных путях имеется "впадина",
    свидетельствующая дыхательным усилиям больного; в - оптимальная скорость пикового потока: восходящая часть кривой P
    aw близка к вертикальной,
    отрицательное давление в пищеводе - незначительное.
    При недостаточной скорости потока можно отметить изменение формы и наклона кривой давления. Угол между ней и горизонтальной осью становится острым. Кроме того, на ней появляются волны, соответствующие дополнительным дыхательным усилиям больного. При проведении вентиляции в режиме Pressure Control недостаточная скорость нарастания давления в дыхательных путях сопровождается направленным вверх изгибом кривой давления. При избыточной скорости на кривой давления появляются осцилляции (рис. 10.9).

    Рис. 10.9. Оптимальность респираторной поддержки при проведении ИВЛ в режиме Pressure Control. а - скорость нарастания давления недостаточная, что проявляется направленным вверх изгибом кривой Р
    aw а также большим отрицательным давлением на кривой P
    es
    ; б - скорость нарастания давления оптимальная, что отражается линейной формой восходящей части кривой Р
    aw и
    подтверждается наибольшей величиной вдуваемого дыхательного объема; в - скорость нарастания давления избыточная, о чем свидетельствует наличие осцилляции на кривой P
    aw
    Оптимальная скорость нарастания давления сопровождается линейной формой восходящей части кривой и приводит к поступлению максимально возможного дыхательного объема для данного уровня давления и податливости легких. Более точная диагностика несоответствия скорости потока потребностям больного возможна при дополнительном анализе кривой давления в нижней трети пищевода, который демонстрирует значительное снижение уровня этого давления в начале вдоха.
    Оценка достаточности создаваемого давления поддержки. Об оптимальности подбора параметров вентиляции в режиме Pressure Support свидетельствует косонисходящая форма кривой потока. Наличие на ней начального спайка, сопровождающегося одновременно регистрируемым спайком на кривой Давления в дыхательных путях, свидетельствует об избыточной величине скорости нарастания давления (рис. 10.10, а).

    Рис. 10.10. Оптимальность подбора параметров вентиляции в режиме Pressure
    Support [Georgopoulos D. et al., 2006]. a - наличие на кривой потока начального спайка, сопровождающегося одновременно Регистрируемым спайком на кривой давления в дыхательных путях (указано стрелкой) свидетельствует об избыточной величине скорости нарастания давления; б - округленная форма кривой потока сопровождается повышением давления в конце вдоха. Три возможные причины:
    низкая скорость нарастания давления, значительные усилия мышц вдоха,
    преждевременная активность мышц выдоха.
    Закругленная форма кривой потока обычно сопровождается повышением давления в конце вдоха (см. рис. 10.10, б). К таким характеристикам дыхательного цикла могут приводить три причины.
    Первая - слишком низкая скорость нарастания давления в дыхательных путях. Увеличение этой скорости позволяет справиться с проблемой. Вторая причина - значительные усилия мышц вдоха.
    Когда инспираторные мышцы наконец-то расслабляются, респиратор не успевает на это отреагировать, что приводит к избыточному повышению давления в дыхательных путях. Решить проблему в этом случае возможно также увеличением скорости нарастания давления или простым увеличением уровня поддержки. Третья причина обсуждаемого искажения формы кривых потока и давления - преждевременная активность мышц выдоха. В этом случае помогают все мероприятия,
    укорачивающие вдох: увеличение скорости создания давления в респираторной системе,
    уменьшение уровня поддержки и увеличение порога переключения с вдоха на выдох. Таким образом, во всех трех случаях есть только одно универсальное средство - ускорение инспираторного
    потока. Остальные способы могут быть диаметрально противоположными, поэтому их эффективность должна оцениваться каждый раз индивидуально при графическом анализе всех дыхательных кривых.
    В ряде случаев полезным является синхронный мониторинг давления в пищеводе. Слишком высокая амплитуда волн пищеводного давления при вентиляции в режиме Pressure Support свидетельствует о значительных усилиях больного, затрачиваемых на работу дыхания (рис. 10.11, а).
    Увеличение поддержки позволяет решить эту проблему: амплитуда волн пищеводного давления снижается (см. рис. 10.11, б).
    Рис. 10.11. Достаточность поддержки в режиме Pressure Support. а - слишком высокая амплитуда волн пищеводного давления свидетельствует о значительных усилиях больного, затрачиваемых на работу дыхания; б - с увеличением поддержки амплитуда волн пищеводного давления снижается.
    Диагностика нарушений экспираторного паттерна. Анализ кривой объема позволяет диагностировать несовпадение объемов вдыхаемого и выдыхаемого воздуха (рис. 10.12). В том случае, если объем вдоха больше объема выдоха, следует искать утечки в респираторной системе
    (сдутая манжета интубационной трубки, бронхоплевральная фистула) или задержку в легких воздуха вследствие ауто-РЕЕР. Больший объем воздуха на выдохе по сравнению с вдохом может регистрироваться при использовании небулайзера и режима TGI, а также в случае намеренного удлинения вдоха и "стравливания" воздуха, скопившегося в легких из-за дыхательной гиперинфляции.
    Рис. 10.12. Нарушения экспираторного паттерна [Maclntyre N., Branson R., 2001]. а - объем вдоха больше объема выдоха; б - объем вдоха меньше объема выдоха.
    Интересную информацию можно получить при анализе экспираторной части кривой потока
    (см. рис. 10.2). Начальной спайк на ней свидетельствует о значительном повышении сопротивления дыхательных путей и затруднениях для выдоха по типу экспираторного закрытия верхних
    дыхательных путей. Экспираторный поток "ударяется" о препятствие в виде сдавленной извне плевральным давлением неэластичной стенки дыхательных путей.
    Искажение формы конечной части кривой экспираторного потока и значительное уменьшение его абсолютной величины - очевидные признаки появления сокращения мышц вдоха.
    Сопоставление времени появления этих признаков на кривой потока со временем начала повышения давления в дыхательных путях позволяет судить о возможных затруднениях триггирования вдоха.
    10.1.2. Раздельная оценка податливости легких и грудной клетки
    При увеличении сопротивления дыхательных путей нарастает пиковое давление вдоха при неизменном давлении плато (рис. 10.13, б). При снижении податливости растет давление плато при неизменном пиковом давлении (см. рис. 10.13, в, г). Отметим, что уточнение истинной причины нарушений податливости респираторной системы (жесткие легкие или грудная клетка) возможно только при дополнительном анализе кривой пищеводного давления.
    Рис. 10.13. Изменения формы кривой давления при изменении податливости легких и сопротивления дыхательных путей [Maclntyre N., Branson R., 2001). а - податливость высокая (разница между давлением плато и PEEP небольшая),
    сопротивление нормальное (разница между Р
    peak и P
    plat незначительная); б - из-за нарастания сопротивления дыхательных путей увеличивается разница между Р
    peak и Р
    plat
    (разница между давлением плато и PEEP по-прежнему небольшая); в, г -из-за снижения податливости нарастает разница между давлением плато и PEEP
    (пиковое давление не меняется). В случае "в" снижена податливость легких, в случае "г" - податливость грудной клетки, что отражается разной величиной давления, измеренного в пищеводе.
    При механическом вдохе величина вдыхаемого объема, деленная на значение амплитуды колебаний давления в пищеводе, отражает податливость легких. Отношение величины
    Дыхательного объема к разнице давлений в дыхательных путях отражает общую податливость всей дыхательной системы (легкие плюс грудная клетка).
    В норме общая податливость высокая. Очевидно, что податливость легких в этом случае тоже высокая. Иными словами, величины P
    aw и P
    es небольшие, разница между ними невелика (см. рис.
    10.13, а).
    Если общая податливость дыхательной системы низкая, то для принятия корректных клинических решений необходимо оценить отдельно податливость легких. Когда податливость легких тоже низкая, больной имеет неподатливые легкие. Это означает, что вся энергия вдоха тратится на попытку их растянуть. Датчик, измеряющий P
    aw
    , покажет высокие значения. Пищеводный
    датчик, располагающийся между жесткими легкими и податливой грудной клеткой, покажет низкие значения P
    es
    , и разница между P
    aw и P
    es будет большой (см. рис. 10.13, в).
    Клиническое значение этого факта состоит в следующем: значительное повышение давления в дыхательных путях при вдохе, необходимое для введения объема воздуха в легкие, создает опасность баротравмы.
    Если при общей высокой податливости дыхательной системы комплайнс легких высокий, то это означает, что у больного нарушена растяжимость грудной клетки. Величины P
    aw и P
    es большие,
    однако разница между ними невелика (см. рис. 10.13, г). В этом случае повышенное давление в дыхательных путях не создает опасности баротравмы и отражает усилия респиратора по растяжению ригидной грудной клетки или по преодолению высокого внутрибрюшного давления.
    10.1.3. Подбор оптимальной скорости пикового потока
    Для подбора оптимальной скорости потока в режиме Pressure Support в качестве ориентира для работы респиратора можно использовать давление не в дыхательном контуре, а в трахее. Для этого в трахею параллельно интубационной трубке вводят тонкий катетер. Учет давления в трахее при проведении Pressure Support позволяет преодолеть один из недостатков режима, связанный с нелинейностью потока через интубационную трубку: недостаточность поддержки в начале вдоха и ее избыточность в конце (рис. 10.14).
    Рис. 10.14. Разные подходы к проведению Pressure Support [Maclntyre N., Branson
    К., 2001]. a - классический вариант (вентилятор ориентируется на заданное P
    aw
    ); б - с использованием трахеального датчика (вентилятор ориентируется на заданное
    Р
    tr
    ). Во втором случае необходимое давление в респираторной системе достигается быстрее, что соответствует потребностям больного.
    Недостатком описанного подхода является маленький диаметр вводимого катетера, из-за чего он может быстро обтурироваться секретом.
    Чувствительным индикатором несоответствия скорости потока механического вдоха потребностям больного служит совместный анализ кривых потока, объема, давления в дыхательных путях и пищеводного давления. При недостаточной скорости потока можно отметить значительную величину отрицательного пищеводного давления, а также искажение формы кривой давления в дыхательных путях (см. рис. 10.8).
    В настоящее время большое внимание уделяется математическому описанию линейности нарастания кривой давления при подаче в легкие потока дыхательной смеси с низкой скоростью. Для
    этого введено понятие стресс-индекса [Ranieri V. М. et al., 2000]. Рассчитывается он по следующей формуле:
    ΔP = a · Δt b
    · c,
    где ΔP - изменения давления вдоха; Δt - время, в течение которого изменяется давление; а, b,
    с - коэффициенты.
    Величина стресс-индекса определяется коэффициентом b. Стресс-индекс, равный 1,01,
    отражает линейную форму восходящей части кривой давления. Если стресс-индекс меньше 1,01, то он отражает выпуклую форму восходящей части кривой давления, больше 1,01 -вогнутую форму.
    Считается, что линейная форма соответствует равномерному распределению воздуха в альвеолах.
    Вогнутая форма кривой появляется вследствие того, что часть альвеол перерастягивается в конце механического вдоха. Выпуклая форма отражает процесс расправления альвеол в начале механического вдоха (рис. 10.15).
    Рис. 10.15. Принцип расчета стресс-индекса. Слева - расправление спавшихся легких, справа - перерастяжение альвеол. Средняя схема отражает оптимальное растяжение альвеол на вдохе [Ranieri V. М. et al., 2000].
    На основании подобных теоретических позиций считается возможным подобрать оптимальное сочетание PEEP и давления вдоха путем оценки формы восходящей части кривой давления и расчета стресс-индекса.
    10.1.4. Диагностика непреднамеренного ауто-РЕЕР
    Анализ кривых P
    aw и P
    es позволяет выявить наличие ауто-РЕЕР по значительной амплитуде волны пищеводного давления и большой задержке триггирования вдоха, что мы рассмотрим подробнее при обсуждении особенностей респираторной поддержки пациентов с острой бронхообструкцией и ХОБЛ.
    10.2. Построение кривой (петли) статической податливости
    Помимо абсолютной величины комплайнса, большое значение имеет построение кривой
    (петли) статической податливости. Ранее уже говорилось, что большого смысла в простом наблюдении за динамическими петлями давление-объем нет. Никакой новой информации по сравнению с графиками, отражающими изменения давления и объема во времени, они не несут.
    Проблема заключается в том, что динамическая петля давление-объем отражает влияние двух факторов одновременно: податливости легких и проходимости дыхательных путей. В связи с этим изменение ее характеристик не позволяет принимать однозначные клинические решения.
    Однако статическая кривая давление-объем в этом отношении значительно более информативна. Классическим способом ее построения является метод супершприца, наполненного
    кислородом. При использовании этого метода больного несколько раз отсоединяют от респиратора и большим шприцем в его легкие вводят разные объемы кислорода. При введении каждого объема регистрируют давление, которое создается при этом в дыхательной системе. Собрав вместе все полученные пары значений "давление-объем", строят искомую кривую (рис. 10.16).
    Рис. 10.16. Построение статической кривой давление-объем методом множественных окклюзии [Maclntyre N., Branson R., 2001]. а - нижняя точка перегиба (low P
    flex
    ); б -верхняя точка перегиба (upper P
    flex
    ).
    В респираторах высшего класса применяют менее трудоемкий метод. Легкие седатированного и релаксированного больного раздувают большим объемом кислородно- воздушной смеси, подаваемой с очень низкой скоростью (10 л/мин). Столь низкая скорость потока позволяет пренебречь фактором сопротивления дыхательных путей. В результате изменения давления отражают только влияние податливости легких. Кривую давление - объем можно построить и во время выдоха, тем самым получив петлю. Петля появляется вследствие гистерезиса - лучшей податливости легких во время выдоха по сравнению с комплайнсом на вдохе. Еще более точно кривая строится, если измеряющий давление датчик поместить у карины трахеи (рис. 10.17).
    Рис. 10.17. Построение статической кривой давление-объем методом низкого потока [Maclntyre N., Branson R., 2001. Сплошная линия - изменения давления в дыхательных путях при скорости потока 60 л/мин; штрихпунктирная линия - изменения давления в дыхательных путях при скорости потока 10 л/мин;
    пунктирная линия - изменения давления в трахее при скорости потока 10 л/мин;
    точки - статическая Р-V кривая, построенная методом супершприца.
    На кривой давление-объем можно выявить две точки перегиба - нижнюю и верхнюю.
    Традиционные представления о значении этих точек таковы. При повышении давления в начале
    вдоха альвеолы находятся в спавшемся состоянии, поэтому относительно большие изменения давления приводят к лишь незначительному возрастанию объема. При достижении величины давления, соответствующего нижней точке, альвеолы начинают открываться. Объем вводимого воздуха в расчете на единицу создаваемого давления растет. При достижении давлением величины,
    соответствующей верхней точке перегиба, отмечается перерастяжение альвеол. Следовательно, при дальнейшем повышении давления в них можно ввести только незначительный дополнительный объем воздуха. Согласно этим взглядам, после построения кривой давление-объем нужно установить величину PEEP чуть выше нижней точки перегиба, а величину P
    plat
    - немного ниже верхней точки. В этом случае удастся избежать как спадания, так и перерастяжения альвеол.
    Современные данные заставляют усомниться в справедливости изложенных представлений
    [Pelosi P., Gattinoni L., 2000]. Динамические компьютерно-томографические исследования,
    математическое моделирование, данные оптоэлектронной плетизмографии свидетельствуют, что одновременного раскрытия альвеол при давлении, соответствующем нижней точке, не происходит.
    Часть альвеол действительно раскрывается при этой величине давления. Однако другие альвеолы становятся открытыми только при более высоких показателях давления в дыхательной системе.
    Даже при давлении, превышающем величину, соответствующую верхней точке перегиба, остаются альвеолы, способные открыться при дальнейшем наращивании давления.
    Исходя из этих данных, подбор параметров вентиляции по статической кривой податливости в значительной степени выглядит упрощенным. Тем не менее построение кривой является полезным для клинической практики. Ряд авторов полагают, что оптимальный способ подбора PEEP - это все же расчет величины нижней точки перегиба. Кроме того, сам факт создания статической кривой податливости представляет собой один из вариантов рекрутмент-маневра, применяемого для восстановления воздушности альвеол. Повторные построения статической петли давление-объем позволяют оценить эффективность этого маневра.
    10.3. Режим Pressure Support в респираторах высшего класса
    В респираторах высшего класса появляется очень важная особенность данного режима: врач может произвольно изменять порог переключения с вдоха на выдох. При преждевременных дыхательных попытках больного и утечках в дыхательном контуре целесообразно увеличение порога переключения вплоть до 90% от величины пикового потока. При затруднении вдоха возникает необходимость его удлинить. В этом случае порог переключения может быть плавно снижен до 5%.
    Благодаря принципам виртуального Pressure Support при обеспечении поддержки давлением некоторые респираторы высшего класса могут сами подбирать адекватную потребностям больного скорость поступления дыхательной смеси на вдохе (рис. 10.18).
    Рис. 10.18. Автоматическое изменение респиратором скорости потока при нарастании сопротивления дыхательных путей (слева направо).

    10.4. Режим BIPAP в респираторах высшего класса
    При проведении ИВЛ в режиме BIPAP возможно поддержание спонтанных вдохов режимом
    Pressure Support. Более простые модели позволяют это осуществлять только на нижнем уровне давления. Респираторы высшего класса обладают возможностью поддержать спонтанные вдохи и на верхнем уровне давления режима BIPAP. Возможна раздельная регулировка величины давления вдоха в Pressure Support на нижнем и верхнем уровне BIPAP (рис. 10.19).
    Рис. 10.19. Поддержка давлением спонтанных вдохов на верхнем и нижнем уровне давления в режиме BIPAP.
    Кроме того, использование Pressure Support при поддержке вдохов на верхнем уровне давления позволяет рационализировать переключение между двумя задаваемыми уровнями, т. е.
    фактически оптимизировать время вдоха. Рассмотрим это подробнее.
    В более простых моделях респираторов время поддержания верхнего давления в режиме
    BIPAP задается врачом и аппаратом не изменяется. В тот момент, когда респиратор собирается переключиться с верхнего уровня давления на нижний, больной может начать попытку вдоха.
    Указанное обстоятельство вызывает кратковременный дыхательный дискомфорт (рис. 10.20, а).
    Рис. 10.20. Улучшение синхронности спонтанного и механического дыхательного цикла в режиме BIPAP. а - в более простых моделях респираторов больной может испытывать дискомфорт при попытке спонтанного вдоха в момент переключения давления с верхнего на нижний уровень; б - в современных моделях проблема дискомфорта решена за счет регулируемого респиратором удлинения периода высокого давления.
    В моделях высшего класса респиратор дожидается, пока поток в дыхательных путях снизится до 25% от пикового и только после этого переключается на нижний уровень давления (см. рис. 10.20,
    б). Можно сказать, что "в угоду больному" машина удлиняет вдох, намеренно нарушая заданные врачом установки. Возможность такой регуляции длительности вдоха позволяет улучшить комфортность проведения ИВЛ и снизить расход кислорода на работу дыхательной мускулатуры.

    10.5. Другие режимы вентиляции в респираторах высшего класса
    Респираторы высшего класса позволяют реализовывать режимы ASV, PAV, АТС, детали которых рассмотрены в главе 4. Указанные режимы существенно расширяют терапевтические возможности как при длительной ИВЛ, так и при отлучении от нее. Кроме того, респираторы высшего класса позволяют обеспечивать неинвазивную вентиляцию. Данный способ ИВЛ проводится не через интубационную или трахеостомическую трубку, а через специальные маски, загубники и шлемы.
    Указанная особенность определяет достоинства и недостатки этого способа. Главное достоинство - возможность поступления кислородно-воздушной смеси через естественные дыхательные пути.
    Благодаря этому сохраняется увлажнение и согревание дыхательной смеси, обеспечивается профилактика микроаспирации содержимого ротоглотки и предупреждается повреждение трахеи вводимыми трубками. Очень важным также является сохранение возможности ауто-ингаляции оксида азота, вырабатываемого слизистой оболочкой верхних дыхательных путей и улучшающего вентиляционно-перфузионные отношения в легких. Сохранение указанных защитных механизмов благоприятно влияет на снижение числа легочных септических осложнений, в первую очередь у пациентов с обострением ХОБЛ и кардиогенным отеком легких.
    Особенности подключения респиратора к дыхательным путям больного определяют и главный недостаток неинвазивной ИВЛ: наличие утечек кислородно-воздушной смеси. В связи с этим возможность проведения неинвазивной вентиляции легких требует от респиратора наличия ряда дополнительных технических возможностей. Для компенсации утечек аппарат ИВЛ должен создавать высокие пиковые потоки (150 л/мин и выше) для компенсации утечек. В ряде моделей эта компенсация проводится автоматически с учетом измеряемых потерь. Для проведения неинвазивной ИВЛ в респираторе должна быть предусмотрена особая система тревог, регуляции триггера и алгоритма переключения с вдоха на выдох. Подчеркнем также важность создания невысокого давления в дыхательных путях (обычно не более 25 см вод. ст.) для предупреждения аэрофагии, перерастяжения живота и регургитации.
    Неинвазивная ИВЛ проводится только больным в ясном сознании, которые могут сотрудничать с врачом: поддерживать маску или загубник, сообщать о болезненности и мацерациях кожи в месте прилегания маски к лицу, прекращать ИВЛ при ее некомфортности или неэффективности. Обычно неинвазивную ИВЛ проводят в режимах Pressure Control, Pressure Support,
    BIPAP. Алгоритмы подачи вдохов - Assist Control и STMV. Перспективным представляется использование NAVA для проведения неинвазивной ИВЛ.

    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта