Главная страница
Навигация по странице:

  • 6.1. Нереанимационные и транспортные модели

  • 6.3. Модели с расширенными функциями

  • 6.4. Модели высшего уровня Респираторами высшего уровня

  • Глава 7. Проведение ИВЛ транспортными респираторами

  • 7.1. Режим PLV в транспортных моделях

  • 7.2. Режим Volume Control в транспортных моделях

  • 7.3. Режимы СРАР и BiPAP в транспортных респираторах

  • 7.4. Отлучение от респиратора

  • Глава 8. Проведение ИВЛ респираторами базовых моделей

  • 8.1. Режим Volume Control в базовых моделях

  • 8.2. Режимы Pressure Control, Pressure Support и СРАР в базовых моделях

  • 8.3. Отлучение от респиратора

  • Царенко С.В. - Практический курс ИВЛ. Царенко С. В. Практический курс ивл


    Скачать 0.72 Mb.
    НазваниеЦаренко С. В. Практический курс ивл
    АнкорЦаренко С.В. - Практический курс ИВЛ.pdf
    Дата10.03.2018
    Размер0.72 Mb.
    Формат файлаpdf
    Имя файлаЦаренко С.В. - Практический курс ИВЛ.pdf
    ТипДокументы
    #16479
    страница5 из 10
    1   2   3   4   5   6   7   8   9   10
    Глава 6. Классификация респираторов
    Основа предлагаемой классификации аппаратов ИВЛ - место и цель их использования. В
    зависимости от этого все респираторы можно разделить на несколько классов:
    1. аппараты для проведения респираторной поддержки в домашних условиях и хосписах
    (нереанимационные модели), а также транспортные респираторы;
    2. аппараты для проведения стандартной респираторной поддержки в
    неспециализированных отделениях интенсивной терапии (базовые модели);
    3. аппараты для проведения респираторной поддержки у больных с тяжелыми расстройствами дыхания в условиях неспециализированных отделений интенсивной терапии
    (модели с расширенными функциями);
    4. аппараты для проведения респираторной поддержки в условиях респираторных центров и специализированных отделений реанимации у больных с особой тяжестью дыхательных расстройств, как правило, в сочетании с другими проявлениями полиорганной недостаточности (модели высшего уровня);
    5. респираторная техника для специальных целей - аппараты для проведения высокочастотной ИВЛ, устройства для подачи оксида азота, гелиево-кислородной смеси,
    экстракорпоральной оксигенации и выведения углекислоты.
    Рассмотрим подробнее технические особенности респираторов разных групп.
    6.1. Нереанимационные и транспортные модели
    Особенностями этих респираторов являются:
    • необходимость всего одного источника сжатого газа - кислорода. Воздух подсасывается из внешней среды или обеспечивается системой невысокого давления - воздуходувкой
    (ситуация знакома российским реаниматологам по устаревшим аппаратам серии РО);
    • упрощенная система подготовки кислородно-воздушной смеси. Вследствие этого содержание кислорода является приблизительным и отсутствует возможность тонкой регулировки его концентрации;
    • небольшая масса и простота управления;
    • отсутствие возможности создания положительного давления в дыхательных путях - PEEP.
    Если эта возможность имеется, то осуществляется при помощи механического лепесткового клапана вдоха-выдоха. Устройство клапана не позволяет поддерживать высокую точность создаваемого PEEP. При проведении длительной ИВЛ лепестки клапана могут слипаться друг с другом под воздействием влаги выдыхаемого воздуха и перестать адекватно функционировать. Наличие лепесткового клапана не позволяет включить в контур респиратора активный увлажнитель. Следует исключить даже кратковременное использование активного увлажнителя из-за опасности обструкции клапана выдоха с развитием гипоксии и гиперкапнии. Единственная возможность обеспечить увлажнение дыхательной смеси - использование фильтра-тепловлагообменника;
    • минимум режимов вентиляции и тревог. Количество режимов тревог ограничено. Одной из причин ограничений является отсутствие датчика потока в колене выдоха респиратора, что не позволяет измерять соответствие потока и объема поступающего в легкие воздуха заданным врачом величинам. Как правило, в респираторах описываемой группы имеется только датчик давления в дыхательном контуре. Указанный датчик обеспечивает контроль лишь над самым необходимым параметром: избыточным давлением в дыхательных путях.
    Респираторами этой группы реанимационные отделения должны оснащаться только для целей внутрибольничной транспортировки больных. Тот факт, что в практике российского здравоохранения нередко их применяют для длительной ИВЛ, свидетельствует о нерациональности закупок респираторной техники местными организаторами здравоохранения.

    6.2. Базовые модели
    Аппараты для проведения стандартной респираторной поддержки в неспециализированных реанимационных отделениях могут применяться приблизительно в 80% клинических ситуаций,
    требующих проведения искусственной вентиляции. По соотношению цена-качество именно их нужно приобретать для оснащения реанимационных отделений центральных районных больниц,
    небольших послеоперационных реанимаций, кардиологических и неврологических блоков интенсивной терапии. Характерные черты базовых моделей следующие:
    • использование двух систем сжатого газа - кислорода и сжатого воздуха. Эти две системы сжатого газа необходимы для обеспечения точного смешивания кислородно-воздушной смеси в заданных пропорциях;
    • наличие дополнительного контроля концентрации вдыхаемого кислорода. Контроль может осуществляться механическим путем с помощью тарельчатого клапана или специальным кислородным датчиком;
    • наличие клапана выдоха, располагающегося на респираторе дистально по отношению к больному. В базовых моделях клапан выдоха пассивный, поскольку он открывается выдыхаемым больным воздухом и закрывается при окончании выдоха. Его устройство позволяет достаточно точно дозировать величину PEEP. Конструкция клапана предполагает как использование тепловлагообменника, так, при необходимости, и активного увлажнения дыхательных путей с помощью встроенного в дыхательный контур увлажнителя;
    • наличие датчиков давления и потока. Использование двух типов датчиков позволяет обеспечить необходимые звуковые и световые тревоги при несоответствии установок респиратора и действительных параметров вентиляции пациента;
    • возможность проведения ИВЛ по двум основным алгоритмам - Assist Control и SIMV.
    Обязательные вдохи в каждом из этих алгоритмов обеспечиваются как в режиме объемной вентиляции (Volume Control), так и вентиляции по давлению (Pressure Control).
    Вспомогательные вдохи при использовании алгоритма SIMV поддерживаются в режимах
    Pressure Support или СРАР. Имеется возможность апнойной вентиляции, т. е. механической вентиляции в случае отсутствия обязательных или вспомогательных вдохов в течение определенного промежутка времени;
    • возможность создания пауз вдоха и выдоха. Паузы создаются с целью оценки давления плато на вдохе и внутреннего PEEP (ауто-РЕЕР);
    • обеспечение синхронности дыхательных попыток пациента и работы аппарата ИВЛ с помощью триггеров по потоку и по давлению. В базовых моделях время отклика триггера составляет обычно 300 -400 мс.
    6.3. Модели с расширенными функциями
    Аппараты для проведения респираторной поддержки у больных с тяжелыми расстройствами дыхания в условиях неспециализированных реанимационных отделений должны составлять основу оснащения крупных межрайонных, городских, областных и республиканских больниц. Кроме опций,
    представленных в базовых моделях, в аппаратах рассматриваемой группы дополнительно должны быть:
    • улучшенные возможности синхронизации дыхательных попыток пациента с работой респиратора. Время отклика триггера на дыхательную попытку больного не должно превышать 100 - 150 мс. При такой величине времени отклика больной не реагирует на задержку подачи вдоха. В ряде моделей столь короткое время отклика реализуется с помощью двух датчиков: потока - на вдохе и на выдохе. В других современных респираторах триггер по потоку функционирует без наличия базового потока;
    • графическое представление кривых объема, потока и давления в дыхательных путях;
    • возможность изменения скорости и профиля инспираторного потока при проведении вентиляции в режимах по давлению. Регуляция указанных параметров нужна для улучшения совпадения дыхательного паттерна больного и работы респиратора;

    • активный клапан выдоха. Его открытие и закрытие регулируются микропроцессором респиратора отдельно от клапана вдоха. Это позволяет проводить ИВЛ с двумя уровнями давления в дыхательных путях (типа BIPAP);
    • двойные режимы вентиляции - PRVC и, возможно, VAPS;
    • автоматическое измерение респиратором сопротивления дыхательных путей,
    динамической податливости, а также возможность определения активности дыхательного паттерна пациента (показатель Р
    0,1
    ).
    При дальнейшем изложении на конкретных примерах будет продемонстрирована практическая значимость визуального представления информации на экране монитора респиратора.
    6.4. Модели высшего уровня
    Респираторами высшего уровня должны быть оснащены крупные специализированные отделения реанимации. Однако из-за их высокой стоимости количество аппаратов высшего уровня в респираторном парке не должно превышать 20 -30%. Использование такой техники оправдано только при крайней тяжести дыхательных расстройств, а также при поражении других систем,
    например при сочетании черепно-мозговой травмы и тяжелого абдоминального компартмент- синдрома.
    К респираторам высшего класса, помимо тех возможностей, которыми обладают модели с расширенными функциями, предъявляют следующие требования:
    • способность к поддержанию спонтанного дыхания больного в любой фазе дыхательного цикла и в любом режиме вентиляции (так называемый виртуальный Pressure Support);
    • возможность изменения критериев выдоха в режиме Pressure Support;
    • возможность многокомпонентного мониторинга легочной механики с использованием трахеальных и пищеводных датчиков;
    • наличие одной или нескольких интегрированных программ для определения статической кривой давление-объем, проведения рекрутмента легких, автоматического определения оптимальных параметров вентиляции и отлучения пациента от респиратора.
    Респираторная техника для специальных целей - высокочастотные струйные и осцилляторные респираторы, мембранные оксигенаторы, устройства для подачи оксида азота, гелиево-кислородной смеси и экстракорпорального выведения углекислоты - в настоящий момент не нашла еще точного места в системе респираторной поддержки. Данная техника является эксклюзивной для респираторных центров и специализированных реанимаций. Она должна использоваться по специальным показаниям только реаниматологами, хорошо разбирающимися в многообразии моделей и возможностей респираторной техники, обладающими хорошими теоретическими знаниями нормальной и патологической физиологии, имеющими большой опыт лечения пациентов с тяжелыми дыхательными расстройствами. В связи с этим рассмотрение респираторной техники этой группы мы выведем за рамки настоящего руководства.

    Глава 7. Проведение ИВЛ транспортными респираторами
    Нередко в реанимационном отделении есть только этот тип аппаратов ИВЛ. Кроме того, из-за нехватки техники врачи вынуждены использовать эти аппараты для проведения стандартной респираторной поддержки. В связи с этим рассмотрим подробно функциональные особенности транспортных респираторов.
    Еще раз отметим, что проведение ИВЛ транспортными респираторами и нереанимационными аппаратами для домашнего пользования из-за их несовершенства возможно только в течение коротких промежутков времени. Это определяется несколькими причинами.
    • Ограниченными возможностями увлажнения вдыхаемого воздуха.
    • Упрощенной системой дозирования кислорода. В транспортных и нереанимационных моделях весьма ограничены возможности изменения содержания кислорода во вдыхаемой смеси. Во многих респираторах существует только две позиции регулятора: подача 50 и 100%
    кислорода. Однако даже в моделях с более плавной регулировкой концентрации кислорода следует учитывать ее приблизительность.
    • Небольшим числом режимов и тревог. Транспортные респираторы имеют достаточно узкие возможности для проведения ИВЛ, особенно в течение длительного времени.
    7.1. Режим PLV в транспортных моделях
    В самых простых транспортных респираторах существует только одна возможность проведения ИВЛ - в режиме вентиляции, ограниченной по давлению (Pressure Limited Ventilation -
    PLV).
    Число поданных механических вдохов зависит от модели респиратора. В простейших аппаратах врач вообще не может установить частоту дыханий. Респиратор подаст столько вдохов,
    сколько будет дыхательных попыток больного. Фактически это алгоритм Assist Control с нулевой частотой обязательных вдохов. Очевидно, что использование данного варианта ИВЛ требует тщательного контроля над дыханием больного для своевременной диагностики апноэ.
    В ряде моделей респираторов врач устанавливает обязательную частоту механических вдохов, которая реализуется вне зависимости от наличия или отсутствия спонтанного дыхания больного (алгоритм Assist Control с выключенным триггером). В данном варианте имеется существенная вероятность несинхронности работы аппарата ИВЛ и дыхательных попыток больного. В
    случае совпадения механического вдоха и спонтанного выдоха респиратор преждевременно прекращает вдох и больной получает сниженный дыхательный объем. Из-за отсутствия датчика потока проблема достаточности вентиляции при проведении ИВЛ транспортным респиратором в режиме PLV стоит очень остро. Фактически единственным средством оценки является наблюдение за экскурсиями грудной клетки больного.
    В некоторых моделях транспортных респираторов и аппаратов для домашнего пользования предусмотрена возможность регулирования скорости увеличения давления в дыхательной системе путем изменения времени вдоха. Указанная возможность позволяет лучше приспособить механический вдох к дыхательному паттерну индивидуального больного. Заранее нельзя решить,
    какому больному понадобится большая, а какому - меньшая скорость нарастания давления в режиме
    PLV. Решение принимается индивидуально в процессе наблюдения за пациентом.
    7.2. Режим Volume Control в транспортных моделях
    Некоторые модели позволяют осуществлять ИВЛ с контролируемым объемом (Volume
    Control). Чаще всего врач задает только величину вдыхаемого объема и частоту вдохов. Иногда в транспортных моделях существует возможность регуляции скорости введения заданного дыхательного объема путем изменения соотношения вдоха к выдоху. Отдельные модели осуществляют триггирование механических вдохов. Однако величина триггирования подбирается по очень приблизительным качественным критериям. Как правило, можно установить лишь большую или меньшую чувствительность.

    Подача вдохов осуществляется в алгоритмах Assist Control или SIMV. В транспортных моделях при реализации алгоритма SIMV самостоятельные вдохи (по требованию) осуществляются только в режиме СРАР.
    Единственная тревога в данном типе респираторов - ограничение максимального давления в дыхательных путях (Р
    mах
    ). Указанная тревога не просто обеспечивает звуковую и световую сигнализацию о превышении допустимого давления в дыхательной системе, но и прерывает механический вдох для предупреждения баротравмы. Повторение подобных ситуаций может привести к гиповентиляции и гипоксии, поэтому необходимы меры по разрешению вызывающей тревогу проблемы, а именно:
    • устранение перегиба шлангов респиратора, обтурации интубационной трубки и обструкции дыхательных путей больного;
    • синхронизация дыхательных попыток больного и работы аппарата ИВЛ путем изменения отношения длительности вдоха к выдоху или повышения чувствительности триггера;
    • синхронизация дыхательных попыток больного и работы респиратора путем использования седативных средств и(или) миорелаксантов.
    7.3. Режимы СРАР и BiPAP в транспортных респираторах
    Реализация данных режимов в транспортных моделях ограничена отсутствием возможности контроля над минутным объемом дыхания, что может приводить к поздней диагностике гиповентиляции и гипоксии.
    7.4. Отлучение от респиратора
    Отлучение от ИВЛ предполагает способность больного поддерживать адекватные параметры гомеостаза при самостоятельном дыхании. Обязательные условия эффективного отлучения следующие:
    • стабильные показатели гемодинамики без использования инотропной поддержки;
    • отсутствие лабораторных и клинических признаков гипоксии и гиперкапнии;
    • высокий уровень бодрствования больного (не менее умеренного оглушения) при отсутствии психопродуктивной симптоматики и возбуждения;
    • отсутствие серьезных инфекционных осложнений;
    • отсутствие нарастания почечной и печеночной недостаточности, грубых расстройств коагуляции.
    При вентиляции транспортными и нереанимационными моделями возможны два способа отлучения от ИВЛ. Первый способ - это перевод больного на самостоятельное дыхание с подачей кислорода через интубационную трубку путем присоединения к ней Т-образного коннектора. Второй способ - применение режима СРАР. Какой из методов предпочтительнее, априори сказать сложно, и вопрос этот решается каждый раз индивидуально.

    Глава 8. Проведение ИВЛ респираторами базовых моделей
    При проведении ИВЛ респираторами базовых и более совершенных моделей выбор режимов расширяется, что позволяет успешнее подобрать индивидуальный способ респираторной поддержки для конкретного пациента, тем самым делая ее эффективнее и безопаснее.
    В базовых моделях возможна реализация всех классических режимов вентиляции:
    обязательных вдохов по давлению и объему, а также вдохов по требованию в режимах Pressure
    Support и СРАР. В рассматриваемых моделях респираторов появляется возможность создания пауз вдоха и выдоха. Создание паузы вдоха позволяет оценить давление плато (P
    plat
    ), величина которого определяет опасность баротравмы легких, а пауза выдоха - измерить истинный PEEP и диагностировать наличие внутреннего PEEP.
    С целью увлажнения дыхательной смеси в респираторах базовых и более совершенных моделей используют как тепло-влагообменники, так и активные увлажнители.
    8.1. Режим Volume Control в базовых моделях
    Вентиляция в режиме Volume Control с использованием базовых моделей проводится в алгоритмах Assist Control и SIMV. В отличие от транспортных респираторов в базовых моделях при применении алгоритма SIMV появляется возможность поддержки вдохов по требованию в режиме
    Pressure Support.
    Как и в транспортных моделях, врач устанавливает величину дыхательного объема обязательного механического вдоха и частоту дыхания. Кроме того, в базовых моделях достаточно точно регулируется скорость потока подаваемого обязательного вдоха.
    Тревоги в режиме Volume Control. В базовых моделях расширяются возможности обеспечения безопасности больного в Режиме Volume Control. Помимо ограничения давления в дыхательных путях (Р
    max
    ), устанавливаются следующие тревоги:
    • ограничение верхней и нижней границы минутного объема дыхания (МОД);
    контроль верхнего предела частоты дыхания;
    • контроль нижней границы дыхательного объема;
    • контроль нижней границы давления в дыхательных путях;
    • контроль нижней границы установленного PEEP.
    Преимущества режима в базовых моделях. Главное преимущество базовых моделей по сравнению с транспортными - возможность плавной регулировки величины пикового потока. Кроме того, повышается безопасность больного из-за появления дополнительных тревог.
    Недостатки режима. В базовых моделях, как и в транспортных, категорически исключаются попытки самостоятельного дыхания больного во время подачи механического вдоха, так как это может приводить к повышению давления в дыхательных путях.
    8.2. Режимы Pressure Control, Pressure Support и СРАР в базовых моделях
    Проведение вентиляции базовыми моделями в режиме Pressure Control осуществляется в алгоритмах Assist Control и SIMV. В ряде клинических ситуаций проблемой является невозможность в условиях ИВЛ с использованием базовых моделей изменить скорость нарастания давления. Для некоторых больных она является избыточной, для других - недостаточной. И то, и другое вызывает дискомфорт пациента.
    Режимы Pressure Support и СРАР применяют для поддержки вдохов по требованию в алгоритме SIMV. В случае установки частоты обязательных вдохов на ноль для безопасности больного нужно использовать функцию апнойной вентиляции, которая имеется в базовых моделях.
    8.3. Отлучение от респиратора
    Отлучение осуществляют путем использования Т-образного коннектора или плавным снижением степени респираторной поддержки. При проведении ИВЛ в течение нескольких часов и
    суток вопрос обычно решают в пользу первого способа. При более длительных сроках используют второй подход. Начинают с постепенного снижения содержания кислорода в дыхательной смеси
    (FiO
    2
    ). При переносимости вентиляции воздухом больного переводят на ИВЛ в алгоритме SIMV и производят постепенное снижение частоты обязательных вдохов. При уменьшении числа обязательных вдохов до нуля начинают снижать величину давления вдохов по требованию в режиме
    Pressure Support. При отсутствии тахипноэ и других признаков непереносимости самостоятельного дыхания величину давления поддержки уменьшают до 5 см вод. ст. После этого можно перевести больного в режим СРАР или применить способ Т-образного коннектора.
    Нередкой ошибкой является попытка использования алгоритма Assist Control для отлучения от респиратора. Врач постепенно снижает базовую частоту механических вдохов и ошибочно полагает, что проводит отлучение от респиратора. Однако, согласно условиям алгоритма Assist
    Control, больной продолжает дышать с той частотой, которую диктует его дыхательный паттерн. В
    связи с этим минутный объем дыхания, обеспечиваемый аппаратом, не меняется при снижении базовой частоты даже до нуля. Очевидно, что никакого отлучения от респиратора в этом случае не происходит.
    Клинический опыт свидетельствует о целесообразности проведения отлучения от респиратора в дневные часы, после того как больной отдохнул ночью и имеется возможность пристального наблюдения за ним. При ИВЛ, продолжавшейся несколько недель, целесообразно на ночь пациента вновь подключать к вспомогательной вентиляции на протяжении 2-3 сут.

    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта