Реферат - Нефтегазопромысловое оборудованию. Эксплуатация скважи. Центробежные насосы установки уэцн общие сведения Схема установки
Скачать 1.53 Mb.
|
Устьевая арматура УЭЦНКонструкция вывода кабеляНаиболее распространенным способом уплотнения кабелей в устьевой арматуре скважин является их заделка с помощью резиновых сальниковых уплотнителей (шайб). Данные «катушки» предназначены для эксплуатации в интервале температур от -60 до +100 °С. Уплотнение российских кабелей производится по изоляции токопроводящих жил, уплотнение кабелей иностранных фирм — по оболочкам жил или по общим шланговым оболочкам (в зависимости от конструкций кабелей). Данный способ трудоемок и не исключает деформацию изоляции и оболочек жил кабелей Рядом ведущих фирм мира разработаны и успешно эксплуатируются узлы вывода кабеля через устьевую арматуру скважин, представляющие собой разъемные герметические соединения концов основного кабеля кабельной линии и питающего наземного кабеля. Рис. 14. Катушки с кабельным вводом Устьевая арматураОборудование устья скважины, эксплуатируемой глубинным центробежным насосом, предназначено для отвода в манифольд продукции скважины, герметизации пространства между обсадной колонной и насосно-компрессорными трубами с учетом ввода в это пространство кабеля и перепуска газа из этого пространства при чрезмерном увеличении его давления. Кроме того, оборудование должно давать возможность использовать приборы при исследовании скважины (замере давления на выкиде у насосно-компрессорных труб и в затрубном пространстве, замере уровня жидкости в ней и т. д.). Рис.17. Схема оборудования устья скважины при эксплуатации ее ЭЦН. Крестовик 1 (Рис. 17.), соединенный с обсадной колонной, имеет разъемный конус 2, на котором подвешиваются НКТ. Над конусом расположено резиновое уплотнение 3, герметизирующее место вывода труб и кабеля 4. Уплотнение поджимается разъемным фланцем 5. Затрубное пространство скважины соединяется с выкидом из НКТ через колено 6 и обратный клапан 7. Крестовик 1 имеет специальное отверстие для применения эхолота или других приборов. Все основные узлы оборудования устья унифицированы с узлами фонтайной арматуры и устья штанговых скважинных насосных установок, что существенно упрощает комплектацию оборудования устья и его эксплуатацию. Рабочее давление, на которое рассчитано оборудование устья, составляет 14 и 21 МПа, давление, на которое рассчитан устьевой сальник, — 4 МПа, диаметр условного прохода запорных органов — 65 мм. Оборудование для монтажа и заправки маслом узлов УЭЦН на устье скважиныУстановка ЭЦН чаще всего имеет довольно большую длину (до 25 м и более), в связи с чем монтаж отдельных узлов и заправка маслом погружного электродвигателя и гидрозащиты проводится непосредственно на устье скважины. Для проведения этих работ применяются специальные виды инструментов и приспособлений. Монтажный хомут-элеватор ХМ-3 предназначен для подъема, спуска, удержания на весу или на фланце колонной головки гидрозащиты, секций насоса и всего насосного агрегата. Монтажный хомут-элеватор (рис. 18) состоит из корпуса 1, затвора 2, двух откидных болтов 3 и двух гаек 4. Откидные болты вращаются вокруг осей 5. Корпус представляет собой скобу с приваренными к ней проушинами, в которых имеются окна и отверстия для стропов и штырей 6. На внутренних поверхностях корпуса и затвора имеется кольцевой выступ, который при закрытии элеватора входит в кольцевую проточку на головке секции насоса или гидрозащиты. Грузоподъемность монтажного хомута-элеватора 3 т, масса 12,5 кг. Грузоподъемность монтажного хомута-элеватора 3 т, масса 12,5 кг. Рис. 18. Монтажный хомут-элеватор ХМ-3 Хомут-элеватор ХМД-2 предназначен для подъема, спуска, удержания на весу или на фланце колонной головки секций электродвигателя. Хомут-элеватор (рис. 19) состоит из корпуса 1, затвора 2, откидного болта 3 и гайки 4. Затвор вращается вокруг оси 5, а откидной болт — вокруг оси 6. Корпус представляет собой скобу с проушинами, в которых имеются окна и отверстия для стропов и штырей 7. На внутренних поверхностях корпуса и затвора имеются выступы. Грузоподъемность хомута-элеватора 2 т, масса 11 кг. Рис. 19. Хомут-элеватор ХМД-2 Заправочный насос МЦ2 предназначен для заправки электродвигателя и гидрозащиты диэлектрическим маслом. Заправочный насос (рис. 20) состоит из емкости 1, в которую вмонтирован ручной поршневой насос 2. Масло ручным насосом нагнетается по шлангу 3 через присоединительный штуцер 4 в заправляемый двигатель. Масло в емкость заливается через горловину 5. Объем емкости 20 литров. Рис. 20. Заправочный насос МЦ2 Для контроля давления масла в электродвигателе и протекторе при проверке герметичности соединения секций электродвигателя, соединения кабеля и протектора с электродвигателем в процессе монтажа на скважине предназначен опрессовочный штуцер с манометром. Для контроля затяжки крепежных деталей при монтаже погружной установки служит динамометрический ключ. Ключ состоит из профилированного трубчатого корпуса, внутри которого концентрично размещены рычаг и подпружиненный ролик. Регулировка ключа производится сжатием пружины при навинчивании рукоятки на корпус и фиксируется контргайкой. На наружном конце рычага устанавливается необходимого размера гаечный ключ. При превышении допустимой величины момента затяжки в процессе монтажа рычаг ключа, проворачиваясь вокруг пальца и сжимая пружину, ударяет по корпусу. Толчок и звук удара являются предупредительным сигналом о необходимости окончания завинчивания крепежной детали. Вилка для кабельной муфты используется для отделения корпуса муфты от головки электродвигателя при демонтаже установки. Основные положения методики подбора УЭЦН к нефтяной скважине. Как уже указывалось ранее, методика подбора УЭЦН к скважинам основывается на знаниях законов фильтрации пластового флюида в пласте и призабойной зоне пласта, на законах движения водо-газо-нефтяной смеси по обсадной колонне скважины и по колонне НКТ, на зависимостях гидродинамики центробежного погружного насоса. Кроме того, часто необходимо знать точные значения температуры как перекачиваемой жидкости, так и элементов насосной установки, поэтому в методике подбора важное место занимают термодинамические процессы взаимодействия насоса, погружного электродвигателя и токонесущего кабеля с откачиваемым многокомпонентным пластовым флюидом, термодинамические характеристики которого меняются в зависимости от окружающих условий . Необходимо отметить, что при любом способе подбора УЭЦН есть необходимость в некоторых допущениях и упрощениях, позволяющих создавать более или менее адекватные модели работы системы «пласт — скважина — насосная установка». В общем случае к таким вынужденным допущениям, не ведущим к значительным отклонениям расчетных результатов от реальных промысловых данных, относятся следующие положения: Процесс фильтрации пластовой жидкости в призабой- ной зоне пласта во время процесса подбора оборудования является стационарным, с постоянными значениями давления, обводненности, газового фактора, коэффициента продуктивности и т.д. Инклинограмма скважины является неизменным во времени параметром. Общая методика подбора УЭЦН при выбранных допущениях выглядит следующим образом: По геофизическим, гидродинамическим и термодинамическим данным пласта и призабойной зоны, а также по планируемому (оптимальному или предельному в зависимости от задачи подбора) дебиту скважины определяются забойные величины — давление, температура, обводненность и газосодержание пластового флюида. По законам разгазирования (изменения текущего давления и давления насыщения, температуры, коэффициентов сжимаемости газа, нефти и воды) потока пластовой жидкости, а также по законам относительного движения отдельных составляющих этого потока по колонне обсадных труб на участке «забой скважины — прием насоса» определяется необходимая глубина спуска насоса, или, что практически то же самое — давление на приеме насоса, обеспечивающие нормальную работу насосного агрегата. В качестве одного из критериев определения глубины подвески насоса может быть выбрано давление, при котором свободное газосодержание на приеме насоса не превышает определенную величину. Другим критерием может являться максимально допустимая температура откачиваемой жидкости на приеме насоса. В случае реального и удовлетворяющего потребителя результата расчета необходимой глубины спуска насоса осуществляется переход к п. 3 настоящей методики. Если же результат расчета оказывается нереальным (например — глубина спуска насоса оказывается больше глубины самой скважины), расчет повторяется с п. 1 при измененных исходных данных — например — при уменьшении планируемого дебита, при увеличенном коэффициенте продуктивности скважины (после планируемой обработки призабойной зоны пласта), при использовании специальных предвключенных устройств (газосепараторов, диспергаторов) и т.д. Расчетная глубина подвески насоса проверяется на возможный изгиб насосной установки, на угол отклонения оси скважины от вертикали, на темп набора кривизны, после чего выбирается уточненная глубина подвески. По выбранной глубине подвески, типоразмеру обсадных и насосно-компрессорных труб, а также по планируемому дебиту, обводненности, газовому фактору, вязкости и плотности пластовой жидкости и устьевым условиям определяется потребный напор насоса. По планируемому дебиту и потребному напору выбираются насосные установки, чьи рабочие характеристики лежат в непосредственной близости от расчетных величин дебита и напора. Для выбранных типоразмеров насосных установок проводится пересчет их «водяных» рабочих характеристик на реальные данные пластовой жидкости — вязкость, плотность, газосодержание. По новой «нефтяной» характеристике насоса выбирается количество рабочих ступеней, удовлетворяющих заданным параметрам — подаче и напору. По пересчитанным характеристикам определяется мощность насоса и выбирается приводной электродвигатель, токоведущий кабель и наземное оборудование (трансформатор и станция управления). По температуре пластовой жидкости на приеме насоса, по мощности, КПД и теплоотдаче насоса и погружного электродвигателя определяется температура основных элементов насосной установки — обмотки электродвигателя, масла в гидрозащите, токоввода, токоведущего кабеля и т.д. После расчета температур в характерных точках уточняется исполнение кабеля по теплостойкости (строительной длины и удлинителя), а также исполнение ПЭД, его обмоточного провода, изоляции и масла гидрозащиты. Если расчетная температура оказывается выше, чем предельно допустимая для применяемых в данном конкретном регионе элементов насосных установок или заказ высокотемпературных дорогих узлов УЭЦН невозможен, расчет необходимо провести для других насосных установок (с измененными характеристиками насоса и двигателя, например с более высокими КПД, с большим внешним диаметром двигателя и т.д.). После окончательного подбора УЭЦН по величинам подачи, напора, температуры и габаритным размерам проводится проверка возможности использования выбранной установки для освоения нефтяной скважины после бурения или подземного ремонта. При этом, в качестве откачиваемой жидкости для расчета принимается тяжелая жидкость глушения или иная жидкость (пена), используемая на данной скважине. Расчет ведется для измененных плотности и вязкости, а также для других зависимостей теплоотвода от насоса и погружного электродвигателя к откачиваемой жидкости. Во многих случаях при указанном расчете определяется максимально возможное время безостановочной работы погружного агрегата при освоении скважины до достижения критической температуры на обмотках статора погружного двигателя. После окончания подбора УЭЦН, установка при необходимости проверяется на возможность работы на пластовой жидкости, содержащей механические примеси или коррозионно- активные элементы. При невозможности заказа для данной конкретной скважины специального исполнения износо- или коррозионностойкого насоса определяются необходимые геолого-технические и инженерные мероприятия, позволяющие снизить влияние нежелательных факторов. ПОГРУЖНЫЕ ВИНТОВЫЕ НАСОСЫ |