Главная страница

Диагностика и интенсивная


Скачать 2.33 Mb.
НазваниеДиагностика и интенсивная
Дата29.03.2022
Размер2.33 Mb.
Формат файлаpdf
Имя файлаDiagnostika i intensivnaya terapiya ostrogo respiratornogo distr.pdf
ТипДокументы
#423740
страница10 из 12
1   ...   4   5   6   7   8   9   10   11   12
44. Gattinoni L., Caironi P., Pelosi P. et al. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;№ 164 (9):1701–1711.
45. Malbouisson L.M., Muller J.C., Constantin J.M. et al. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;№ 163 (6):1444–1450.
46. Papazian L., Calfee C.S., Chiumello D. et al. Diagnostic workup for ARDS patients. Intensive
Care Med. 2016.
47. Gattinoni L., Tonetti T., Quintel M. Regional physiology of ARDS. Crit. Care. 2017.
48. Gattinoni L., Pesenti A. The concept of “baby lung.” Intensive Care Med. 2005;№ 31 (6):776–
784.
49. Brunet F., Jeanbourquin D., Monchi M. et al. Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan? Am J Respir Crit Care Med. 1995;№ 152
(2):524–530.
50. Chiumello D., Marino A., Brioni M. et al. Lung Recruitment Assessed by Respiratory
Mechanics and by CT Scan: What is the Relationship? Am J Respir Crit Care Med. 2015;1–67.
51. Goodman L.R., Fumagalli R., Tagliabue P. et al. Adult Respiratory Distress Syndrome Due to
Pulmonary and Extrapulmonary Causes: CT, Clinical, and Functional Correlations1. Radiology.
1999;№ 213 (2):545–552.
52. Bellani G., Mauri T., Pesenti A. Imaging in acute lung injury and acute respiratory distress syndrome. Curr Opin Crit Care. 2012;№ 18 (1):29–34.
53. Кузовлев А.Н., Мороз В.В., Голубев А.М. Диагностика острого респираторного дистресс- синдрома при нозокомиальной пневмонии. Общая реаниматология. 2009; (6):5–12.
54. Cressoni M., Cadringher P., Chiurazzi C. et al. Lung Inhomogeneity in Patients with Acute
Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2013;№ 189 (2).
55. Henne E., Anderson J.C., Lowe N. et al. Comparison of human lung tissue mass measurements from ex vivo lungs and high resolution CT software analysis. BMC Pulm Med. BioMed Central;
2012;№ 12:18.
56. Hall J.E. Guyton and Hall Textbook of medical physiology. 13th ed. Elsevier; 2015.
57. Barcroft J., Camis M. The dissociation curve of blood. J Physiol. Wiley-Blackwell; 1909;№ 39

71
(2):118–142.
58. Rice T.W., Wheeler A.P., Bernard G.R. et al. Comparison of the SpO2/FIO2 ratio and the PaO
2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. American College of Chest
Physicians; 2007;№ 132 (2):410–417.
59. Ashbaugh D., Boyd Bigelow D., Petty T. et al. Acute respiratory distress in adults. Lancet.
Elsevier; 1967;№ 290 (7511):319–323.
60. Murray J.F., Matthay M.A., Luce J.M. et al. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;№ 138 (3):720–723.
61. Bernard G.R., Artigas A., Brigham K.L. et al. The American-European Consensus Conference on ARDS: Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir
Crit Care Med. American Thoracic Society; 1994. p. 818–824.
62. Thille A.W., Esteban A., Fernández-Segoviano P. et al. Comparison of the berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;№ 187
(7):761–767.
63. Guerin C., Bayle F., Leray V. et al. Open lung biopsy in nonresolving ARDS frequently identifies diffuse alveolar damage regardless of the severity stage and may have implications for patient management. Intensive Care Med. Springer Verlag; 2015;№ 41 (2):222–230.
64. Ferguson N.D., Davis A.M., Slutsky A.S. et al. Development of a clinical definition for acute respiratory distress syndrome using the Delphi technique. J Crit Care. 2005;№ 20 (2):147–154.
65. Pelosi P., D’Onofrio D., Chiumello D. et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl. 2003;№ 42:48s-56s.
66. Amato M.B.P., Meade M.O., Slutsky A.S. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. Massachusetts Medical Society ; 2015;№ 372
(8):747–755.
67. Moss M., Goodman P.L., Heinig M. et al. Establishing the relative accuracy of three new definitions of the adult respiratory distress syndrome [Internet]. Crit. Care Med. 1995. p. 1629–
1637.
68. Gattinoni L., Carlesso E., Cressoni M. Selecting the ‘right’ positive end-expiratory pressure level. Curr Opin Crit Care. 2015;№ 21 (1):50–57.
69. Chiumello D., Cressoni M., Carlesso E. et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;№ 42 (2):252–264.
70. Kuzkov V. V., Kirov M.Y., Sovershaev M.A. et al. Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med. 2006;№ 34 (6):1647–1653.

72 71. Кузьков В.В., Смёткин А.А., Суборов Е.В. и др. Внесосудистая вода легких и рекрутмент альвеол у пациентов с острым респираторным дистресс-синдромом. Вестник анестезиологии и реаниматологии. 2012;№ 9 (2): с.15–21.
72. Blankman P., Shono A., Hermans B.J.M. et al. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients. Br J Anaesth. 2016;№ 116 (6).
73. Talmor D., Sarge T., O’Donnell C.R. et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med. 2006;№ 34 (5):1389–1394.
74. Vieira S.R.R., Puybasset L., Lu Q. et al. A scanographic assessment of pulmonary morphology in acute lung injury: Significance of the lower inflection point detected on the lung pressure- volume curve. Am J Respir Crit Care Med. 1999;№ 159 (5 I):1612–1623.
75. Loring S.H., O’Donnell C.R., Behazin N. et al. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol. 2010;№ 108 (3):515–522.
76. Silva P.L., Pelosi P., Rocco P.R.M. Optimal mechanical ventilation strategies to minimize ventilator-induced lung injury in non-injured and injured lungs. Expert Rev Respir Med. 2016;№ 10
(12):1–3.
77. West J.B., Luks A. West’s respiratory physiology : the essentials. 10th ed. Lippincott Williams
& Wilkins; 2016.
78. Gulati G., Novero A., Loring S.H. et al. Pleural pressure and optimal positive end-expiratory pressure based on esophageal pressure versus chest wall elastance: incompatible results*. Crit Care
Med. 2013;№ 41 (8):1951–1957.
79. Gattinoni L., Vagginelli F., Chiumello D. et al. Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Crit Care Med. 2003;№ 31 (4
Suppl):S300–S304.
80. Beitler J.R., Sarge T., Banner-Goodspeed V.M. et al. Effect of Titrating Positive End-
Expiratory Pressure (PEEP) with an Esophageal Pressure-Guided Strategy vs an Empirical High
PEEP-F io 2 Strategy on Death and Days Free from Mechanical Ventilation among Patients with
Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA - J Am Med Assoc.
American Medical Association; 2019. p. 846–857.
81. Ярошецкий А.И., Проценко Д.Н., Бойцов П.В. и др. Оптимальное положительное конечно-экспираторное давление при ОРДС у больных гриппом а(H1N1)pdm09: баланс между максимумом конечно-экспираторного объема и минимумом перераздувания альвеол.
Анестезиология и реаниматология. 2016;№ 61 (6): с.425–432.
82. Thille A.W., Richard J.-C.M., Maggiore S.M. et al. Alveolar Recruitment in Pulmonary and

73
Extrapulmonary Acute Respiratory Distress SyndromeComparison Using Pressure-Volume Curve or Static Compliance. J Am Soc Anesthesiol. The American Society of Anesthesiologists; 2007;№ 106 (2):212–217.
83. Ярошецкий А.И. Респираторная поддержка при гипоксемической острой дыхательной недостаточности: стратегия и тактика на основе оценки биомеханики дыхания: дис. ... д-ра. мед. наук: 14.01.20 / Москва,. 2019;473.
84. Кузьков В.В., Киров М.Ю., Вэрхауг К. и др. Оценка современных методов измерения внесосудистой воды легких и аэрации при негомогенном повреждении легких
(экспериментальное исследование). Анестезиология и реаниматология. 2007; (3): с.42–45.
85. Zhang J.C., Chu Y.F., Zeng J. et al. Effect of continuous high-volume hemofiltration in patients with severe acute respiratory distress syndrome. Chinese Crit Care Med. 2013;№ 25 (3):145–148.
86. Bein T., Grasso S., Moerer O. et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;№ 42 (5):699–
711.
87. Xie J., Yang J. [Effect of continuous high-volume hemofiltration on patients with acute respiratory distress syndrome and multiple organ dysfunction syndrome]. Zhongguo Wei Zhong
Bing Ji Jiu Yi Xue. 2009;№ 21 (7):402–404.
88. Pelosi P., Croci M., Ravagnan I. et al. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analg. 1998;№ 87 (3):654–660.
89. Pelosi P., Quintel M., Malbrain M.L.N.G. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg. 2007;№ 62 Suppl 1:78–88.
90. Власенко А.В., Голубев А.М., Мороз В.В. et al. Дифференцированное лечение острого респираторного дистресс-синдрома. Общая реаниматология. 2011;№ VII (4):5–14.
91. Protti A., Andreis D.T., Iapichino G.E. et al. Ventilation with Lower Tidal Volumes as
Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory
Distress Syndrome. N Engl J Med. BioMed Central; 2000;№ 342 (18):1301–1308.
92. Frat J.-P., Thille A.W., Mercat A. et al. High-Flow Oxygen through Nasal Cannula in Acute
Hypoxemic Respiratory Failure. N Engl J Med. Massachusetts Medical Society; 2015;№ 372
(23):2185–2196.
93. Stéphan F., Barrucand B., Petit P. et al. High-Flow Nasal Oxygen vs Noninvasive Positive
Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery. JAMA. 2015;№ 313
(23):2331–2339.
94. Combes A., Hajage D., Capellier G. et al. Extracorporeal Membrane Oxygenation for Severe
Acute Respiratory Distress Syndrome. N Engl J Med. Massachussetts Medical Society; 2018;№ 378 (21):1965–1975.

74 95. Michael J.R., Barton R.G., Saffle J.R. et al. Inhaled nitric oxide versus conventional therapy:
Effect on oxygenation in ARDS. Am J Respir Crit Care Med. 1998;№ 157 (5 PART I):1372–1380.
96. Gerlach M., Keh D., Gerlach H. Inhaled nitric oxide for acute respiratory distress syndrome.
Respir Care. 1999. p. 184–192.
97. Lundin S., Mang H., Smithies M. et al. Inhalation of nitric oxide in acute lung injury: Results of a European multicentre study. Intensive Care Med. 1999;№ 25 (9):911–919.
98. Kallet R.H. Evidence-based management of acute lung injury and acute respiratory distress syndrome. Respir Care. 2004;№ 49 (7):793–809.
99. Vieillard-Baron A., Matthay M., Teboul J.L. et al. Expert’s opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care
Med. 2016;№ 42 (5):739–749.
100. Chen X., Ye J., Zhu Z. et al. Evaluation of high volume hemofiltration according to pulse- indicated continuous cardiac output on patients with acute respiratory distress syndrome. Zhonghua
Wei Zhong Bing Ji Jiu Yi Xue. Heilongjiang Institute of Science and Technology Information;
2014;№ 26 (9):650–654.
101. Beitler J.R., Malhotra A., Thompson B.T. Ventilator-induced Lung Injury. Clin Chest Med.
2016;№ 37 (4):633–646.
102. Meade M.O., Cook D.J., Guyatt G.H. et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;№ 299 (6):637–645.
103. McClave S.A., Taylor B.E., Martindale R.G. et al. Guidelines for the Provision and
Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care
Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J
Parenter Enter Nutr. 2016;№ 40 (2):159–211.
104. Singer P., Reintam Blaser A., Berger M.M. et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;№ 38:48–79.
105. Kangelaris K.N., Ware L.B., Wang C.Y. et al. Timing of intubation and clinical outcomes in adults with acute respiratory distress syndrome. Crit Care Med. Lippincott Williams and Wilkins;
2016;№ 44 (1):120–129.
106. Antonelli M., Conti G., Esquinas A. et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome*. Crit Care Med. 2007;№ 35 (1):18–25.
107. Demoule A., Girou E., Richard J.-C. et al. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med. 2006;№ 32 (11):1756–1765.
108. Parsons P.E., Eisner M.D., Thompson B.T. et al. Lower tidal volume ventilation and plasma

75 cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;№ 33
(1):1–6; discussion 230-232.
109. McMullen S.M., Meade M., Rose L. et al. Partial ventilatory support modalities in acute lung injury and acute respiratory distress syndrome-A systematic review. PLoS One. 2012;№ 7
(8):e40190.
110. Brower R.G., Lanken P.N., MacIntyre N. et al. Higher versus Lower Positive End-Expiratory
Pressures in Patients with the Acute Respiratory Distress Syndrome. N Engl J Med. Massachusetts
Medical Society; 2004;№ 351 (4):327–336.
111. Slutsky A.S. Mechanical ventilation. American College of Chest Physicians’ Consensus
Conference. Chest. 1993. p. 1833–1859.
112. Peters S.G., Holets S.R., Gay P.C. Nasal High Flow Oxygen Therapy in Do-Not-Intubate
Patients With Hypoxemic Respiratory Distress. Respir Care. 2012;№ 58 (4):597–600.
113. Vargas F., Saint-Leger M., Boyer A. et al. Physiologic effects of high-flow nasal Cannula oxygen in critical care subjects. Respir Care. American Association for Respiratory Care; 2015;№ 60 (10):1369–1376.
114. Miguel-Montanes R., Hajage D., Messika J. et al. Use of High-Flow Nasal Cannula Oxygen
Therapy to Prevent Desaturation During Tracheal Intubation of Intensive Care Patients With Mild- to-Moderate Hypoxemia*. Crit Care Med. 2015;№ 43 (3):574–583.
115. Simon M., Wachs C., Braune S. et al. High-flow nasal cannula versus bag-valve-mask for preoxygenation before intubation in subjects with hypoxemic respiratory failure. Respir Care.
American Association for Respiratory Care; 2016;№ 61 (9):1160–1167.
116. Aggarwal N.R., Brower R.G., Hager D.N. et al. Oxygen Exposure Resulting in Arterial
Oxygen Tensions Above the Protocol Goal Was Associated With Worse Clinical Outcomes in
Acute Respiratory Distress Syndrome. Crit Care Med. NLM (Medline); 2018;№ 46 (4):517–524.
117. Hofmann R., James S.K., Jernberg T. et al. Oxygen therapy in suspected acute myocardial infarction. N Engl J Med. Massachussetts Medical Society; 2017;№ 377 (13):1240–1249.
118. Damiani E., Adrario E., Girardis M. et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. BioMed Central Ltd.; 2014;№ 18
(6):711.
119. Roffe C., Nevatte T., Sim J. et al. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: The stroke oxygen study randomized clinical trial. JAMA
- J Am Med Assoc. American Medical Association; 2017;№ 318 (12):1125–1135.
120. Elmer J., Scutella M., Pullalarevu R. et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. Springer
Verlag; 2015;№ 41 (1):49–57.

76 121. Page D., Ablordeppey E., Wessman B.T. et al. Emergency department hyperoxia is associated with increased mortality in mechanically ventilated patients: A cohort study. Crit Care. BioMed
Central Ltd.; 2018;№ 22 (1):9.
122. Pollack C. V., Diercks D.B., Roe M.T. et al. 2004 American College of Cardiology/American
Heart Association guidelines for the management of patients with ST-elevation myocardial infarction: Implications for emergency department practice. Ann Emerg Med. Mosby Inc.; 2005;№ 45 (4):363–376.
123. Arntz H.R., Bossaert L., Filippatos G.S. European Resuscitation Council Guidelines for
Resuscitation 2005: Section 5. Initial management of acute coronary syndromes. Resuscitation.
2005. p. S87-96.
124. Tolias C.M., Reinert M., Seiler R. et al. Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: A prospective historical cohort-matched study [Internet]. J. Neurosurg. American Association of
Neurological Surgeons; 2004. p. 435–444.
125. Menzel M., Doppenberg E.M.R., Zauner A. et al. Cerebral oxygenation in patients after severe head injury: Monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism, and intracranial pressure. J Neurosurg Anesthesiol. Lippincott Williams and Wilkins; 1999;№ 11
(4):240–251.
126. Rockswold S.B., Rockswold G.L., Zaun D.A. et al. A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg. 2013;№ 118 (6):1317–1328.
127. Taher A., Pilehvari Z., Poorolajal J. et al. Effects of normobaric hyperoxia in traumatic brain injury: A randomized controlled clinical trial. Trauma Mon. Kowsar Medical Publishing Company;
2016;№ 21 (1).
128. Quintard H., Patet C., Suys T. et al. Normobaric Hyperoxia is Associated with Increased
Cerebral Excitotoxicity After Severe Traumatic Brain Injury. Neurocrit Care. Humana Press Inc.;
2015;№ 22 (2):243–250.
129. Timofeev I., Carpenter K.L.H., Nortje J. et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;№ 134 (Pt
1   ...   4   5   6   7   8   9   10   11   12


написать администратору сайта