Достижения и проблемы физиологии. Достижения и проблемы систематики и физиологии растений
Скачать 46.11 Kb.
|
МИНОБРНАУКИ РОССИИ Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Академия биологии и биотехнологии им. Д.И. Ивановского Кафедра почвоведения и оценки земельных ресурсов Реферат на тему: Достижения и проблемы систематики и физиологии растений Выполнила аспирант 1-го года Медведева А.М. Ростов-на-Дону – 2016 Физиология растений — это наука о процессах, происходящих в растительном организме. Задача физиологии растений заключается в раскрытии сущности этих процессов для того, чтобы научиться рационально использовать их. К.А. Тимирязев писал: «Физиолог не может довольствоваться пассивной ролью наблюдателя, как экспериментатор, он является деятелем, управляющим природой». В этом определении заложена целая программа действия для каждого физиолога. Из него видно, что, с одной стороны, физиология растений — это теоретическая наука, которая опирается на последние достижения физики, химии, молекулярной биологии, с другой стороны, эта наука имеет большое практическое значение для земледелия. К.А. Тимирязев писал: «Физиология растений — это научная основа земледелия». Таким образом, в задачи физиологии растений входят раскрытие сущности процессов, протекающих в растительном организме, установление их взаимной связи, изменение под влиянием среды, механизмов их регуляции, физиологические изыскания и обоснование приемов, направленных на повышение продуктивности сельскохозяйственных культур. Задача физиологии растений как науки - исследование процессов метаболизма, роста и развития растений, выяснение механизмов этих процессов и взаимосвязей между ними. Физиология растений охватывает весь круг процессов, происходящих в растительном организме, и соответственно подразделяется на ряд направлений: · в основе этих направлений лежит учение о растительной клетке, особенностях её структуры и функционирования, а так же о механизмах восприятия и передачи сигнала в растении; · ряд направлений физиологии растений посвящён исследованию отдельных процессов обмена веществ у растений. Это такие разделы, как фотосинтез, дыхание, водный обмен, минеральное питание и вторичный метаболизм. Физиология роста и развития растений изучает механизмы роста и дифференцировки клеток, тканей и органов, механизмы размножения растений, а также механизмы их регуляции факторами внешней среды, такими как свет, температура и т.п.; · отдельным направлением можно выделить изучение механизмов движения растений; · физиология устойчивости растений исследует механизмы, при помощи которых растения защищаются от действия неблагоприятных факторов среды, как биотических (патогенные бактерии, грибы, вирусы), так и абиотических (засуха, засоление, повышенные и пониженные температуры, избыток солнечного света); · особняком стоит такое направление, как культура клеток растений. Оно посвящено исследованию поведения растительных клеток и тканей в культуре in vitro, разработке методов их выращивания и соответствующих биотехнологий (микроклональное размножение растений, производство лекарств и пищевых добавок и т.п.). Направления, посвящённые исследованию обмена веществ растений, такие как фотосинтез, дыхание и минеральное питание, также имеют прямой практический выход в сельское хозяйство. Они позволяют разработать новые эффективные удобрения и регуляторы роста, вывести более продуктивные сорта растений. Основные вехи развития ботаники, систематики и физиологии растений Период XV—XVII вв. в развитии биологии рассматривается как метафизический, идёт накопление большого объема материала, но рассматривается он с теологических и телеологических позиций. Именно с XV в. начинается описание флоры в разных странах Европы. Германский флорист Иероним Бок (1498—1554) в своих травниках дал подробное описание 567 растений и их рисунки, сведения о времени цветения растений, их распространении и характере местообитания. И.Бок разделил растения на дикорастущие с душистыми цветами, клевер, злаки, кормовые, деревья и кустарники. Леонард Фукс (1501—1566) в книге «История растений» дал описание более 400 видов. Голландский учёный Карл Клюзиус (1525—1609) распространил картофель в Европе и описал его как ботаник. В его трудах выражен вид как группа близкородственных форм. «Отцы ботаники» (Брунфелс, Бок, Фукс) составили многотомные травники с описаниями и зарисовками растений, они играли роль лечебных каталогов. В этом отношении наибольший интерес представляет книга Отто Брунфелса (1488 - 1534) «Живые изображения растений». Он также впервые составил «Флору Германии». Велики заслуги шведских ботаников, братьев Баугинов. Иоганн Баугин (1541—1613) в книге «Естественная история растений» описал 4000 видов. Его брат Каспар Баугин (1560—1624) по результатам путешествия по Центральной Европе дает описание около 6000 видов растений, В своих описаниях он положил конец неразберихе в названиях растений, имевшихся у разных авторов. Он строго разграничивал понятия «рода и вида», предложив четырехчленные названия растений вплоть до разновидностей. В этом смысле его работы содержат зачатки бинарной номенклатуры. Его стремление оценивать степень сходства видов по комплексу признаков можно рассматривать как попытку построить естественную систему растений. Виды растений К.Баугин располагал по признакам сходства в 12 групп или классов. Андреа Чезальпино (1512—1605) известен как морфолог и систематик, предложивший объективные диагностические признаки для определения растений, опираясь на особенности строения плодов, цветков и семян. В этом он опередил К.Линнея. Вслед за Аристотелем А. Чезальпино рассматривал растения как несовершенных животных. Питание и размножение он относил к основным функциям растений, которые соответственно связывал с деятельностью корней и семян. Семена же рассматривал как вместилище души растений. По диагностическим признакам А. Чезальпино выявил степень родства в пределах деревьев, кустарников и трав (семенные), водорослей, мхов и папоротников (бессемянные). Среди указанных групп растений далее им выделяются одно- и двусеменные виды с голыми и покрытыми семенами. Он различал отделы, роды и виды растений. Хотя его система во многом оставалась искусственной, он первым навел порядок в ботаническом материале, уже тогда ставшем плохо обозримым. Каждый орган он рассматривал с учетом числа, положения и формы. Он пытался понять питание растений, но не дошел до понимания роли листьев в этом процессе. Иоахим Юнг (1587—1657) в начале XVII в. закладывает основы морфологии и органографии растений, что имело значение для последующей систематизации видов, он предложил комплекс диагностических признаков, внешних и внутренних, с учётом гомологии органов. И.Юнг подробно описал различные формы стебля, расположения ветвей и листьев, многообразие форм листьев, соцветий (колос, кисть, зонтик и т.д.). Джон Рей (1627—1705) отличался разносторонностью интересов, описал множество растений, опираясь на идеи И. Юнга. Он делил растения на 31 группу, давая видам четырехчленную классификацию, четко выделяя понятия «род», «вид» и классы. Классы располагал в порядке усложнения. В работе «История растений» Дж. Рей в качестве диагностических признаков на первый план ставил плоды, цветы и их расположение, особенности венчика и чашечки, форму и строение листьев, особенности корневой системы. Растения делил на две группы; совершенные (одно- и двудольные) и несовершенные (водоросли, грибы, печеночные, мхи, лишайники, хвощи, папоротники). Задачей ботаники Дж. Рей считал построение филогенетической системы. Виды определял как «формы,.., сохраняющие свою специфическую природу, и ни одна из них не возникает из семени другой формы»; т.е., по сути, он ввёл 2 критерия вида: морфологический и репродуктивный. Заслугой Дж. Рея является введение понятия «вид» в биологию. Считал, что виды постоянны, хотя иногда допускал и превращение видов. Исследования Жозефа Турнефора (1656—1708) содержали описание 500 видов растений, выделенных по строению цветка (безлепестковые и лепестковые). Лепестковые он делил на одно- и многолепестковые. Он подчеркивал, что изучение каждого растения следует начинать с цветка и венчика, затем перейти к плоду. Другие признаки растений не могут сравниться с ними по значимости для классификации. Турнефор различал такие категории систематики как класс, секция, род и вид. Особенно его классификация отличалась детальным описанием родов. Все растения он делил на 18 классов: розоцветные, губоцветные, крестоцветные, мотыльковые, злаковые и др. В этот же период возникают новые направления в экспериментальной ботанике, закладываются основы изучения пола и тонкого строения растений. Так, Рудольф-Яков Камерариус (1665—1721) в работе «О поле у растений» (1694) обращает внимание на существование одно- и двуполых цветков, одно- и двудомных растений, различную судьбу опыленных и неопыленных цветков, прослеживает развитие пыльников, участие пыльцы в опылении и оплодотворении. При этом проследил развитие семени у шелковицы, клещевины, конопли и других растений, конкретизировал женский и мужской органы размножения в опытах с удалением тычинок и пестика. На примере хвощей и плаунов подобные попытки завершились неудачами, причины их он не смог объяснить. Не смог понять и явление оплодотворения без микроскопического контроля, необходимость которого он ясно понимал. Принципиальное значение для развития ботаники имели исследования по изучению анатомической структуры растений. Это стало возможным лишь после конструирования Галилео Галилеем в 1624 г. микроскопа, с усовершенствованием которого отмечен переворот во многих областях биологии. Первоначально Галилей назвал свой прибор «оккиолино» - глазок.В 1625 г. друг Г.Галилея по Академии Джованни Фабер по аналогии с термином «телескоп» предлагает увеличительный прибор Г. Галилея назвать «микроскопом». С внедрением микроскопической техники в биологию и развитием анатомии растений наблюдается прогресс в изучении жизнедеятельности растений, зарождается физиология растений как теоретическая основа растениеводства. Так, в 1563 г. французский ремесленник Бернар Палисси в книге «Истинный рецепт, посредством которого все французы могут научиться увеличивать свои богатства» показал возможность повышения урожая путем подкормки растений некоторыми неорганическими солями. Подобные опыты в дальнейшем сыграли решающую роль в обосновании теории плодородия почв. Несколько позже Ян Баптист ван Гельмонт (1686) в опытах с взвешиванием почвы в сосудах до и после культивирования укорененных ветвей ивы не обнаружил изменения в ее весе, что привело его к отрицанию роли почвы в питании растений, основой питания объявлялась вода. Важным итогом этого опыта все же следует признать саму постановку вопроса о возможности экспериментального изучения факторов питания растений. В этих целях проводятся и другие опыты. Так, Марчелло Мальпиги (1675—1679) по результатам наблюдений за развитием тыквы высказал предположение об участии семядолей и листьев, солнечного света в питании растений. Методом кольцевания стебля он установил, что вода движется по сосудам в листья, из них она в виде переработанного сока возвращается вниз по коре. В работе «Анатомия растений» описал наличие восходящего и нисходящего тока у растений. Несколько позже англичанин Джеймс Вудворд (1699), выращивая растения в воде из различных мест, показал, что без минеральных веществ они оказываются угнетёнными. Другой британец Стивен Гейлс (последователь Ньютона) в работе «Статика растений» (1727) показал, что всасывание воды через корень и передвижение её по растению происходит в результате действия капиллярных сил. Он обнаружил корневое давление, а в наблюдениях над испарением растений – засасывающее действие листьев в этом процессе. Таким образом, Гейлс установил нижний и верхний концевые двигатели, которые обеспечивают передвижение воды в растениях снизу вверх. Он же определил интенсивность транспирации и объём испаряемой воды в разные периоды у растений с листьями и без них. Наибольшего расцвета искусственная систематика достигла в середине 18 века (система Карла Линнея). Краткость и четкость – этим и следует, по мнению Линнея, руководствоваться, называя растения. Данному условию как нельзя лучше соответствовали введенные им в постоянный обиход двойные (бинарные) наименования. Бинарная система предполагает, что у каждого вида растений и животных есть единственное, принадлежащее только ему одному научное название (биномен), состоящее всего из двух слов (латинских или латинизированных). Первое из них – общее для целой группы близких друг к другу видов, составляющих один биологический род. Второе – видовой эпитет – представляет собой прилагательное или существительное, которое относится только к одному виду данного рода. Так, лев и тигр, включаемые в род «кошки» (Felis), называются соответственно Felis leo и Felis tigris, а волк из рода собаки (Canis) – Canis lupus. Сам Линней не придавал бинарной системе особого значения и делал упор на полиноминальное, т. е. многословное название-описание, а соответствующий ему биномен сам считал простым названием (nomen trivialis), не имеющим научного значения и всего лишь облегчающим запоминание вида. Таким образом, каждый вид получил «фамилию» и «имя» – стоящее на первом месте родовое и следующее за ним видовое названия. Так, род лютик (Ranunculus) объединяет лютик ползучий, лютик едкий, лютик кашубский, лютик золотистый и еще около 400 видов. Видовое же название определяет, если можно так сказать, индивидуальность растения, его специфику. Чтобы бинарные названия были единообразными, унифицированными, их следует подчинять строго определенным правилам. Прежде всего, они должны быть по форме латинскими или латинизированными, то есть написаны с соблюдением правил латинской грамматики. В конце названия таксона ставят (обычно в сокращенном виде) имя систематика, впервые описавшего и «окрестившего» данный вид или иной таксон. В начале 19 в. были описаны ростовые движения у растений - тропизмы, которые позднее детально исследовал Ч. Дарвин. Особенно бурно развивались работы в области почвенного питания растения. Немецкий учёный А. Тэер сформулировал гумусовую теорию (1810-19), в которой решающую роль в питании растений отводил органическому веществу почвы. В 40-х гг. 19 в. на смену гумусовой теории питания растений пришла минеральная теория немецкого химика Ю. Либиха, в которой подчёркивалась роль минеральных элементов почвы в корневом питании растений. Работы Либиха содействовали развитию физиологических исследований и внедрению минеральных удобрений в сельскохозяйственную практику. Ж. Буссенго использовал разработанный им вегетационный метод для изучения закономерностей поступления азота и др. минеральных элементов в растение. Буссенго и немецкий учёный Г. Гельригель выявили специфические особенности бобовых растений как азотфиксаторов, а русский ботаник М. С. Воронин в 1866 доказал, что клубеньки, образующиеся на корнях этих растений, имеют бактериальную природу. Большую роль в развитии физиологии растений в 19 в. сыграли немецкие учёные Ю. Сакс, В. Пфеффер, австрийские ботаники Ю. Визнер, Х. Молиш, чешские учёные Б. Немец и Ю. Стокласа и другие исследователи. Так, например, физиолог Пфеффер, встретившись с задачей объяснения механизма изменений объема живых растительных клеток при раздражениях, открыл существование осмоса и дал экспериментальный материал для обоснования учения об аналогии газового состояния и состояния веществ в разбавленных растворах. Это учение стало краеугольным камнем зарождавшейся в последней четверти позапрошлого века новой научной дисциплины - физической химии. А ботаник Депо был одним из основателей учения о двухмерном состоянии материи, о так называемых мономолекулярных пограничных пленках. Значение этого учения быстро вышло за пределы первоначально изучавшейся проблемы. Оно стало основой представлений о лабильных структурах, характеризующихся определенным размещением и ориентировкой молекул. К концу XIX века эволюция во взглядах на органическую форму связана с учением Чарлза Дарвина, впервые прочно утвердившим идею развития органического мира и объяснил, каким образом совершается процесс его эволюции. Дарвиновское учение провозгласило, что живой мир имеет свою историю, свое настоящее и будущее, что именно этой истории органической формы и отвечают свойственные ей физиологические особенности. Основываясь на том, что отличительным свойством организмов является их приспособленность к окружающей среде, Дарвин впервые дал свободное от теологических измышлений объяснение целесообразности строения организмов и тем самым создал качественно новую обстановку для развития физиологии. Дарвину физиология обязана рождением, так называемого, сравнительного метода, который широко используется при изучении проблемы изменчивости физиологических функций в связи с условиями жизни организмов. Ему же обязана своим становлением эволюционная физиология, изучающая специфические особенности обмена веществ у организмов, находящихся на различных ступенях филогенетического развития. Физиология растений в России. В середине XIX в. физиология растений стала выделяться в самостоятельные кафедры при университетах, в том числе и в России (1863г.). Петербургская и Московская школы физиологов растений берут начало от первого отечественного ботаника, физиолога и агронома Н.И. Железнова (1847 - 1867гг), который провёл впервые в России исследования по эмбриологии растений и положил начало работам по физиологии растений. Он в значительной степени определил становление кафедры анатомии и физиологии растений в Московском Университете и показал практическое значение физиологии растений, как научной основы растениеводства. Наиболее способным среди многочисленных учеников профессора Н.И. Железнова был С.А Рачинский (1859-1870), ставший впоследствии профессором первой в России самостоятельной кафедры физиологии растений при Московском университете. С.А Рачинский осуществил первый перевод на русский язык книги Ч. Дарвина «Происхождение видов», выдержавшей три издания и способствовавшей широкому распространению эволюционного учения среди русских биологов. С.А. Рачинскому принадлежат работы по выяснению механизма ростовых движений у растений, изучению химического состава клеточного сока растений, роли цитоплазмы в жизни растений. Во 2-й половине 19 в. и начале 20 в. были сделаны основополагающие открытия в области изучения обмена веществ и энергии в растительных организмах. С этого времени связь физиологии и биохимии растений становится особенно тесной. Впервые термин "обмен веществ" применительно к растениям ввёл русский ботаник А. С. Фаминцын (1883). А.С. Фаминцын (1835- 1918) стал первым русским ученым, посвятившим себя физиологии растений, который создал крупную научную школу и выпустил первый отечественный учебник (1885) и монографию по физиологии растений. Ему принадлежат открытие фотосинтеза на искусственном свету, работы по росту и развитию, превращению веществ, симбиотическим взаимоотношениям между водорослями и грибами, сравнительной и эволюционной физиологии растений. С именем этого замечательного ученого связана и организация первой в нашей стране лаборатории по физиологии растений при Академии наук. Среди представителей его научной школы выделяют Д.И.Ивановского - основоположника вирусологии, С.Н. Виноградского - первооткрывателя хемосинтеза, М.С. Цвета - автора хроматографического метода, О.В. Баранецкого - крупного специалиста в области водного режима растений, И.П. Бородина - специалиста по экологии дыхания растений, А.А. Рихтера - автора теории хроматической адаптации водорослей и других видных ученых. Они внесли значительный вклад в экспериментальную ботанику и выдвинули отечественную физиологию растений на одно из первых мест в мире. 2-я половина 19 в. ознаменовалась важными исследованиями К. А. Тимирязева (1871г.) о роли хлорофилла в процессе фотосинтеза. Доказав приложимость к фотосинтезу растений закона сохранения энергии, К. А. Тимирязев (1875г.) обосновал и развил представления о космической роли зелёных растений, которые, осуществляя уникальную функцию фотосинтеза, связывают жизнь на Земле с энергией Солнца. К.А. Тимирязев (1896) в Петровской академии организовал специальную физиологическую лабораторию и на Нижегородской выставке продемонстрировал первый в России вегетационный домик для выращивания растений, а затем стал организатором Московской школы физиологов растений. Так с 1872 г. в Московском университете началось изучение энергетики фотосинтеза, обоснование применимости закона сохранения энергии к фотосинтезу. Крупный физиолог растений, блестящий экспериментатор, историк науки и ее талантливый популяризатор К.А. Тимирязев создал замечательную сводку «Жизнь растения», имевшую непреходящее значение, существенно развил и пропагандировал исторический подход в биологическом исследовании. Его учениками стали Ф.Н. Крашенинников, занимавшийся изучением продуктов фотосинтеза с энергетической точки зрения, В.И. Палладии, один из авторов современного представления о дыхании растений, Е.Ф. Вотчал, много сделавший в изучении механизма движения восходящего водного тока в древесных растениях, основоположник отечественной физиологии древесных растений Л.А. Иванов и выдающийся физиолог-агрохимик Д.Н. Прянишников. Так детальным изучением процессов обмена азотистых веществ в растении, результаты которого привели к коренным изменениям в практике применения азотсодержащих удобрений, наука обязана советскому агрохимику Д. Н. Прянишникову. Большое значение имели работы Д. Н. Прянишникова и его школы в области фосфорного и калийного питания растений, известкования почв и во многих др. областях физиологии минерального питания. Важную роль сыграли работы его учеников. Г. Г. Петров детально изучил процессы метаболизма азота в растении в зависимости от условий освещения, И. С. Шулов создал ряд вариантов вегетационного метода (метод текучих растворов, стирильных культур и др.), с помощью которых он доказал способность корней растений ассимилировать органические соединения, в том числе и некоторые белковые соединения, Ф. В. Чириков исследовал физиологические особенности с.-х. растений, различающихся по способности усваивать труднорастворимые формы фосфатов почвы. В области водообмена и засухоустойчивости растений фундаментальные работы принадлежат Н. А. Максимову. На основе работ в области физиологии микроорганизмов, среди которых особое место принадлежит открытию С. Н. Виноградским хемосинтеза (1887), стали всё более четко вырисовываться закономерности круговорота отдельных элементов в природе, выявляться роль в этом процессе растений и их симбиотических взаимоотношений с микрофлорой почвы. Физиология растений XIX-го века в действительности изучала отдельные стороны жизнедеятельности растений, причем такое состояние науки соответствовало периоду начального накопления фактического материала и разработки методов исследования. В ХХ в. физиология растений вступала в период научных исследований, где установление взаимной связи функций растительного организма и их зависимости от внешних и внутренних факторов, изучение взаимодействия органов растения стало ведущей линией в научных поисках. Современные направления развития физиологии растений Первая четверть XX в. характеризуется участием ряда выдающихся химиков в разработке проблем химии растительных веществ, а затем и обмена веществ растений. Трудами Вильштеттера, Каррера, Куно, Эмилия Фишера и ряда других ученых было сделано так много в понимании свойств растительных пигментов, белков и углеводов, что появилась возможность возникновения самостоятельной отрасли ботанических знаний - биохимии растений. В курсе «Физиология растений» С. П. Костычева, бывшего одновременно выдающимся биохимиком и фитофизиологом, была сделана попытка охватить в одном руководстве все возраставший материал фитофизиологии и новой нарождавшейся дисциплины - биохимии растений. XX в. - время наиболее бурного и многостороннего развития физиологии растений. Если в XIX столетии в центре внимания физиологов находились вопросы воздушного и минерального питания, водного обмена и дыхания, то такие проблемы, как физиология клетки, рост, развитие, раздражимость, устойчивость к неблагоприятным факторам в то время только зарождались. Постепенно по мере своего развития некоторые из этих разделов накопили такую массу знаний и стали иметь такое большое значение для практики, что обособились от нее и превратились в самостоятельные дисциплины. В 1902 г. от физиологии растений отделилась вирусология, в 1910 г. оформилась в самостоятельную науку агрохимия, в 1930 г. - микробиология и биохимия.В первой половине XX в. развернулись исследования по экологической и частной физиологии растений. В 1919 году Н.И. Вавилов стал основателем учения об иммунитете растений, положившего начало изучению его генетической природы. Позже Рубин Б.А. (1949-1976) создал физиолого-биохимическую теорию иммунитета растений к патогенным агентам. Дальнейшее развитие физиологии растений связано с успехами смежных наук. В 30-50-х годах XX в. успешно развивались биохимия, цитология, генетика и др., совершенствовались их методы. Началось проникновение научной информации из этих смежных, более молодых наук в физиологию растений. Например, полученные биохимиками в 40 - 50-х годах данные о ферментных системах дыхания, фотосинтеза, азотного обмена, о принципах передачи энергии открыли перед физиологами новые возможности в исследовании этих процессов. Большой вклад в развитие физиологии растений внесли представители советской школы физиологов растений В. Р. Заленский, раскрывший роль сосущей силы как решающего регулятора водного баланса растения, В. В. Колкунов, установивший взаимосвязь между анатомическим строением, В. Н. Любименко, доказавший, что хлорофилл в хлоропластахнаходится не в свободном состоянии, а связан с белками. В 1950 году завершилось строительство первой в стране лаборатории искусственного климата - прототипа современных фитотронов, которая позволяла работать в контролируемых условиях по следующим проблемам, сформулированными И.И. Гунаром: «Целостность и раздражимость растительного организма, динамика основных физиологических процессов» (1950-1965), «Физиологические элементы регуляторной системы растений» (1966-1975). Достижения физиологии растений в России в 40 - 70-х связаны с трудами Д.А. Сабинина (1932-1949) по значению корневой системы в водном и минеральном питании растений, по росту и развитию растений. Он предугадал роль гормонов в жизни растений и показал активное участие корней в процессах метаболизма и влияние круговорота элементов минерального питания на рост и формообразование растений. С середины 1970-х годов, наряду с продолжением и углублением традиционных направлений научных исследований, появились и новые. В частности, центр тяжести был перенесен на изучение физиологических слагаемых продукционного процесса, выявление путей их регуляции на организменном и ценотическом уровнях, донорно-акцепторных отношений, складывающихся между отдельным частями растений в течение онтогенеза, реакции различных генотипов растений на изменение экологических факторов среды, адаптивных потенциалов сортов и гибридов, представляющих интерес для селекции и производства. Н.Н. Третьяков, М.Н.. Кондратьев и др. исследовали влияние ионного состава и температуры корнеобитаемой среды на поглощение различных форм азота и формирование качества урожая; Е.И. Кошкин, М.В. Моторина изучали особенности фотосинтетической деятельности посевов и продукционный процесс. Использование физико-химических методов во второй половине прошлого века привело к взаимопроникновению идей физиологии растений, с одной стороны, и биохимии, биофизики, молекулярной биологии, генетики и микробиологии - с другой. Так Красновский А.А. (1976) создал новое, пограничное между биохимией, биофизикой и фотохимией, направление науки - фотобиохимию. Им были проведены фундаментальные исследования принципов биологического и фотохимического преобразования солнечной энергии, которые легли в основу современных представлений о механизме фотосинтеза и оказали решающее влияние на развитие работ по фотосинтезу и фотобиологии в нашей стране. В 80-90-х А.Л. Курсанов изучил основы транспорта ассимилянтов и интеграцию функциональных систем в растительном организме, А.А. Ничипорович создал теорию фотосинтетической продуктивности растений, М.Х. Чайлахян предложил гормональную теорию онтогенеза и регуляцию цветения, Р.Г. Бутенко (1986 г.) основала новый раздел физиологии растений - биологию клетки растений in vitro, изучила механизмы морфогенеза в культуре изолированных клеток и тканей. Исследования О.Н. Кулаевой (1976-2010) положили начало работам по выяснению механизма действия цитокининов, что перевело проблему регуляции цитокининами старения/омоложения в общебиологическую проблему в мировой науке. Характерные черты современного этапа развития биологии — стирание граней между отдельными её отраслями и их интеграция. Так, в систематике растений для характеристики отдельных таксонов всё шире применяют цитологические, анатомические, эмбриологические и биохимические методы. Методы биохимии и физиологии берутся на вооружение экологами и геоботаниками, в результате чего возникает комплексная наука о физиологии растительного сообщества, появление которой предсказывали ещё в 20-х гг. 20 в. русский учёный В. В. Алехин и шведский учёный Э. Дю Рье и которую обычно называют ценофизиологией. Исторический период, пришедший на смену периоду обособления и продолжающийся по сегодняшний день в развитии физиологии растений, можно назвать периодом интеграции. И на этом этапе истории биологии на первое место выходит роль наук, способных к интеграции сложных систем вплоть до пролиферации и дифференцировке клеток, морфогенеза, онтогенеза, адаптивных процессов целого организма, основанных на первичных матричных структурах и процессах клетки. На постгеномном этапе истории именно физиология, биохимия, биофизика, цитология, иммунология получат неограниченный простор для решения самых сложных проблем биологии ХХI века. Список литературы: 1. Алехина Н. Д., Балнокин Ю. В., Гавриленко В. Ф. и др. Физиология растений/ под ред. проф. Ермакова И.П. - М.: Академия, 2005. – 640 с. 2. Камелин Р.В. Лекции по систематике растений. Главы теоретической систематики растений. - Барнаул: Изд-во «Азбука», 2004. – 226с. 3. Лебедев С.И. Физиология растений. - М.: Колос, 1982.-463 с. 4. Третьяков Н. Н., Кошкин Е. И., Макрушин Н. М. и др. Физиология и биохимия сельскохозяйственных растений. - М.: Колос, 2000. - 640 с. 5. http://fizrast.ru/ - "Физиология растений" Онлайн-энциклопедия дата посещения 23.10.16 |