Главная страница
Навигация по странице:

  • Условия обитания организмов воздушной и водной среды (по Д. Ф. Мордухай-Болтовскому, 1974)

  • Условия обитания Значение условий для организмов воздушной среды

  • Низкая плотность воздуха

  • Газовый состав воздуха

  • Световой режим.

  • Экология учебник для вузов - А.С. Степановских. Экология


    Скачать 21.33 Mb.
    НазваниеЭкология
    АнкорЭкология учебник для вузов - А.С. Степановских.doc
    Дата28.01.2017
    Размер21.33 Mb.
    Формат файлаdoc
    Имя файлаЭкология учебник для вузов - А.С. Степановских.doc
    ТипДокументы
    #65
    КатегорияЭкология
    страница16 из 104
    1   ...   12   13   14   15   16   17   18   19   ...   104

    5.2. Наземно-воздушная среда жизни



    Общая характеристика. В ходе эволюции наземно-воздушная среда была освоена значительно позднее, чем водная. Жизнь на суше потребовала таких приспособлений, которые стали возможными только при сравнительно высоком уровне организации как растений, так и животных. Особенностью наземно-воздушной среды жизни является то, что организмы, которые здесь обитают, окружены воздухом и газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растения укореняются в ней.

    В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами, значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток (табл. 5.3).

    Таблица 5.3

    Условия обитания организмов воздушной и водной среды

    (по Д. Ф. Мордухай-Болтовскому, 1974)


    Условия

    обитания

    Значение условий для организмов

    воздушной среды

    водной среды

    Влажность

    Очень важное (часто в дефиците)

    Не имеет (всегда в избытке)

    Плотность

    среды

    Незначительное (за исключением почвы)

    Большое по сравнению с ее ролью для обитателей воздушной среды

    Давление


    Почти не имеет


    Большое (может достигать 1000 атмосфер)

    Температура


    Существенное (колеблется в очень больших пределах (от -80 до +100 °С и более)

    Меньшее по сравнению со значением для обитателей воздушной среды (колеблется гораздо меньше, обычно от -2 до +40°С)

    Кислород


    Несущественное (большей частью в избытке)

    Существенное (часто в дефиците)

    Взвешенные

    вещества

    Неважное; не используются в пищу (главным образом минеральные)

    Важное (источник пищи, особенно органические вещества)

    Растворенные вещества в окружающей среде

    В некоторой степени (имеют значение только в почвенных растворах)


    Важное (в определенном количестве необходимы)


    Воздействие вышеуказанных факторов неразрывно связано с движением воздушных масс — ветра. В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологичес-кие, физиологические, поведенческие и другие адаптации. Например, появились органы, которые обеспечивают непосредственное усвоение атмосферного кислорода в процессе дыхания (легкие и трахеи животных, устьица растений). Получили сильное развитие скелетные образования (скелет животных, механические и опорные ткани растений), которые поддерживают тело в условиях незначительной плотности среды. Выработались приспособления для защиты от неблагоприятных факторов, таких, как периодичность и ритмика жизненных циклов, сложное строение покровов, механизмы терморегуляции и др. Сформировалась тесная связь с почвой (конечности животных, корни растений), выработалась подвижность животных в поисках пищи, появились переносимые воздушными течениями семена, плоды и пыльца растений, летающие животные.

    Рассмотрим особенности воздействия основных экологических факторов на растения и животных в наземно-воздушной среде жизни.

    Низкая плотность воздуха определяет его малую подъемную силу и незначительную спорность. Все обитатели воздушной среды тесно связаны с поверхностью земли, служащей им для прикрепления и опоры. Плотность воздушной среды не оказывает высокого сопротивления организма при их передвижении по поверхности земли, однако затрудняет перемещение по вертикали. Для большинства организмов пребывание в воздухе связано только с расселением или поиском добычи.

    Малая подъемная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные на поверхности земли меньше, чем гиганты водной среды. Крупные млекопитающие (размером и массой современного кита) не могли бы жить на суше, так как были бы раздавлены собственной тяжестью. Гигантские ящеры мезозоя вели полуводный образ жизни. Другой пример: высокие прямостоячие растения секвойи (Sequoja sempervirens), достигающие 100 м, обладают мощной опорной древесиной, в то время как в слоевищах гигантских бурых водорослей Macrocystis, вырастающих до 50 м, механические элементы лишь очень слабо обособлены в сердцевинной части таллома.

    Малая плотность воздуха создает незначительную сопротивляемость передвижению. Экологические выгоды этого свойства воздушной среды использовали многие наземные животные в ходе эволюции, приобретя способность к полету. 75% всех видов наземных животных способны к активному полету. Это большей частью насекомые и птицы, но встречаются и млекопитающие, и рептилии. Наземные животные летают главным образом с помощью мускульных усилий. Некоторые животные могут и планировать за счет воздушных течений.

    Вследствие подвижности воздуха, которое существует в нижних слоях атмосферы, вертикальное и горизонтальное передвижение воздушных масс, возможен пассивный полет отдельных видов организмов, развита анемохория расселение с помощью воздушных потоков. Организмы, пассивно переносимые потоками воздуха, получили в совокупности название аэропланктона, по аналогии с планктонными обитателями водной среды. Для пассивного полета по Н.М. Черновой, А.М. Быловой (1988) у организмов имеются специальные адаптации — мелкие размеры тела, увеличение его площади за счет выростов, сильного расчленения, большой относительной поверхности крыльев, использование паутины и др.

    Анемохорные семена и плоды растений обладают также очень мелкими размерами (например, семена кипрея) или разнообразными крыловидными (клен Acer pseudoplatanum) и парашюто-видными (одуванчик Taraxacum officinale) придатками

    Ветроопыляемые растения обладают целым рядом приспособлений, которые улучшают аэродинамические свойства пыльцы. Цветочные покровы у них обычно редуцированы и пыльники ничем не защищены от ветра.

    В расселении растений, животных и микроорганизмов главную роль играют вертикальные конвенционные потоки воздуха и слабые ветры. Бури, ураганы оказывают также существенное экологическое воздействие на наземные организмы. Довольно часто сильные ветры, особенно дующие в одм направлении, изгибают ветви деревьев, стволы в подветренную сторону и служат причиной образования флагообразныъ форм кроны.

    В районах, где постоянно дует сильный ветер, как правило, беден видовой состав мелких летающих животных, так как они не способны сопротивляться мощным воздушным потокам. Так, медоносная пчела летит только при силе ветра до 7 – 8 м/с, а тли – при очень слабом ветре, не превышающем 2,2 м/с. У животныъ этих мест развиваются плотные покровы, предохранчяющие тело от охлаждения и потерь влаги. На океанических островах с постоянными сильными ветрами преобладают птицы и особенно насекомые, утратившие способность к полету, у них отсутствуют крылья, ткак как тех, кто способен подняться в воздух, сносит ветром в море и они погибают.

    Ветер вызывает изменение интенсивности транспирации у растений и особенно сильно проявляется при суховеях, иссушающих воздух, может приводить к гибели растений. Основная же экологическая роль горизонтальных воздушных передвижений (ветров) – косвенная и заключается в усилении или ослаблении воздействия на наземные организмы таких важных экологических факторов, как температура и влажность. Ветры усиливают отдачу животными и растениями влаги и тепла.

    При ветре легче переносится жара и тяжелее – морозы, быстрее наступает иссушение и охлаждение организмов.

    Наземные организмы существу.т в условиях относительно низкого давления, которое обусловлено малой плотностью воздуха. В целом наземные организмы более стенобатны, чем водные, потому что обычные колебания давления в окружающей их среде составляют доли атмосферы, и для поднимающихся на большую высоту, например, птиц, не превышают 1/3 нормального.

    Газовый состав воздуха, как уже было рассмотрено ранее, в приземном слое атмосферы довольно одноролден ( кислород - 20,9%, азот — 78,1%, м.гртные газы — 1%, углекислый газ — 0,03% по объему) благодаря высокой его диффузионной способности и постоянному перемешиванию конвекционным и ветровым потоками. Вместе с тем различные примеси газообразных, капельно-жидких, пылевых (твердых) частиц, попадающих в атмосферу из локальных источников, нередко имеют существенное экологическое значение.

    Кислород из-за постоянно высокого его содержания в воздухе не является фактором, лимитирующим жизнь в наземной среде. Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов, и на базе высокой эффективности окислительных процессов возникла гомойотермия животных. Только местами, в специфических условиях, создается временный дефицит кислорода, например в разлагающихся растительных остатках, запасах зерна, муки и т. д.

    Содержание углекислого газа в атмосфере может меняться в результате сжигания ископаемого топлива, обмена с биосферой и океаном.

    В отдельных участках приземного слоя воздуха содержание углекислого газа может изменяться в довольно значительных пределах. Так, при отсутствии ветра в крупных промышленных центрах, городах концентрация его может возрастать в десятки раз.

    Закономерны суточные изменения содержания угаекислоты в приземных слоях, обусловленные ритмом фотосинтеза растений (рис. 5.17).

    Рис. 5.17. Суточные изменения вертикального профиля

    концентрации СО2 в воздухе леса (из В. Лархера, 1978)
    На примере суточных изменений вертикального профиля концентрации СО2 в воздухе леса показано, что днем на уровне крон деревьев углекислота расходуется на фотосинтез, а при отсутствии ветра здесь образуется зона, бедная СО2 (305 ч на млн), в которую поступает СО, из атмосферы и почвы (дыхание почвы). Ночью устанавливается стабильное расслоение воздуха с повышенной концентрацией СО2 в припочвенном слое. Сезонные колебания углекислого газа связаны с изменениями интенсивности дыхания живых организмов, большей частью микроорганизмов почвы.

    В высоких концентрациях углекислый газ токсичен, но в природе такие концентрации встречаются редко. Низкое же содержание СО2 тормозит процесс фотосинтеза. Для повышения скорости фотосинтеза в практике оранжерейного и тепличного хозяйства (в условиях закрытого грунта) нередко увеличивают искусственным путем концентрацию углекислого газа.

    Для большинства обитателей наземной среды азот воздуха представляет инертный газ, но такие микроорганизмы, как клубеньковые бактерии, азотобактерии, клостридии, обладают способностью связывать его и вовлекать в биологический круговорот.

    Основной современный источник физического и химического загрязнения атмосферы является антропогенным: предприятия промышленности и транспорта, эрозия почв и т. д. Так, сернистый газ ядовит для растений в концентрациях от одной пятидесятитысячнои до одной миллионной от объема воздуха. Лишайники погибают уже при следах в окружающей среде сернистого газа. Поэтому особо чувствительные растения к SO2 нередко используются в качестве индикаторов его содержания в воздухе. Чувствительны к задымлению обыкновенная ель и сосна, клен, липа, береза.

    Световой режим. Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. При разных погодных условиях к поверхности Земли доходит 42 — 70% солнечной постоянной. Проходя через атмосферу, солнечная радиация претерпевает ряд изменений не только в количественном отношении, но и по составу. Коротковолновая радиация поглощается озоновым экраном и кислородом воздуха. Инфракрасные лучи поглощаются в атмосфере водяными парами и диоксидом углерода. Остальная часть в виде прямой или рассеянной радиации достигает поверхности Земли.

    Совокупность прямой и рассеянной солнечной радиации составляет от 7 до 7„ суммарной радиации, тогда как в облачные дни рассеянная радиация составляет 100%. В высоких широтах преобладает рассеянная радиация, тропиках — прямая. Рассеянная радиация содержит в полдень желто-красных лучей до 80%, прямая — от 30 до 40%. В ясные солнечные дни солнечная радиация, достигающая поверхности Земли, на 45% состоит из видимого света (380 — 720 нм) и на 45% из инфракрасного излучения. Только 10% приходится на ультрафиолетовое излучение. На радиационный режим значительное влияние оказывает запыленность атмосферы. Вследствие ее загрязненности в некоторых городах освещенность может составлять 15% и менее освещенности за городом.

    Освещенность на поверхности Земли варьирует в широких пределах. Все зависит от высоты стояния Солнца над горизонтом или угла падения солнечных лучей, длины дня и условий погоды, прозрачности атмосферы (рис. 5.18).



    Рис. 5.18. Распределение солнечной радиации в зависимости от

    высоты Солнца над горизонтом (А1 — высокое, А2 — низкое)

    В зависимости от времени года и времени суток также колеблется интенсивность света. В отдельных районах Земли неравноценно и качество света, например, соотношение длинноволновых (красных) и коротковолновых (синих и ультрафиолетовых) лучей. Коротковолновые лучи, как известно, больше, чем длинноволновые, поглощаются и рассеиваются атмосферой. В горных местностях поэтому всегда больше коротковолновой солнечной радиации.

    Деревья, кустарники, посевы растений затеняют местность, создают особый микроклимат, ослабляя радиацию (рис. 5.19).

    Рис. 5.19. Ослабление радиации:

    А — в редком сосновом лесу; Б — в посевах кукурузы Из поступающей фотосинтетически активной радиации 6—12% отражается (R) от поверхности насаждения
    Таким образом, в разных местообитаниях различаются не только интенсивность радиации, но и ее спектральный состав, продолжительность освещения растений, пространственное и временное распределение света разной интенсивности и т. д. Соответственно разнообразны и приспособления организмов к жизни в наземной среде при том или ином световом режиме. Как уже нами было отмечено ранее, по отношению к свету различают три основных группы растений: светолюбивые (гелиофиты), тенелюбивые (сциофи-ты) и теневыносливые. Светолюбивые и тенелюбивые растения различаются положением экологического оптимума.

    У светолюбивых растений он находится в области полного солнечного освещения. Сильное затенение действует на них угнетающе. Это растения открытых участков суши или хорошо освещенных степных и луговых трав (верхний ярус травостоя), наскальные лишайники, ранневесенние травянистые растения листопадных лесов, большинство культурных растений открытого грунта и сорняков и т. д. Тенелюбивые растения имеют оптимум в области слабой освещенности и не выносят сильного света. Это главным образом нижние затененные яруса сложных растительных сообществ, где затенение результат «перехвата» света более высокорослыми растениям и-сообитателями. Сюда относят и многие комнатные и оранжерейные растения. Большей частью это выходцы из травянистого покрова или флоры эпифитов тропических лесов.

    Экологическая кривая отношения к свету и у теневыносливых несколько асимметрична, так как они лучше растут и развиваются при полной освещенности, но хорошо адаптируются и к слабому свету. Это распространенная и очень пластичная группа растений в наземной среде.

    У растений наземно-воздушной среды выработались приспособления к различным условиям светового режима: анатомо-морфологические, физиологические и др.

    Наглядным примером анатомо-морфологических приспособлений является изменение внешнего облика в разных световых условиях, например неодинаковая величина листовых пластинок у растений, родственных по систематическому положению, но живущих при разном освещении (луговой колокольчик — Campanula patula и лесной — С. trachelium, фиалка полевая — Viola arvensis, растущая на полях, лугах, опушках, и лесные фиалки — V. mirabilis), рис. 5.20.


    Рис. 5.20. Распределение размеров листьев в зависимости от условий

    обитания растений: от влажных к сухим и от затененных к солнечным

    Примечание. Заштрихованный участок соответствует условиям, преобладающим в природе
    В условиях избытка и недостатка света расположение листовых пластинок у растений в пространстве значительно варьирует. У растений-гелиофитов листья ориентированы на уменьшение прихода радиации в самые «опасные» дневные часы. Листовые пластинки расположены вертикально или под большим углом к горизонтальной плоскости, поэтому днем листья получают большей частью скользящие лучи (рис. 5.21).

    Особенно это ярко выражено у многих степных растений. Интересна адаптация к ослаблению полученной радиации у так называемых «компасных» растений (дикий латук — Lactuca serriola и др.). Листья у дикого латука расположены в одной плоскости, ориентированной с севера на юг, и в полдень приход радиации к листовой поверхности минимальный.

    У теневыносливых же растений листья расположены так, чтобы получить максимальное количество падающей радиации.



    Рис. 5.21. Поступление прямой (S) и рассеянной (Д) солнечной радиации к растениям с горизонтальными (А), вертикальными (Б) и различно ориентированными (В) листьями (по И. А. Шульгину, 1967)

    1,2 — листья с разными углами наклона; S1, S2 — поступление к ним прямой радиации; Sобщ — ее суммарное поступление к растению
    Нередко теневыносливые растения способны к защитным движениям: изменению положения листовых пластинок при попадании на них сильного света. Участки травяного покрова со сложенными листьями кислицы сравнительно точно совпадают с расположением крупных солнечных бликов. Ряд адаптивных черт можно отметить в строении листа как основного приемника солнечной радиации. Например, у многих гелиофитов поверхность листа способствует отражению солнечных лучей (блестящая — у лавра, покрытая светлым волосковым налетом — у кактуса, молочаев) или ослаблению их действия (толстая кутикула, густое опушение). Для внутреннего строения листа характерно мощное развитие палисадной ткани, наличие большого количества мелких и светлых хлоропластов (рис. 5.22).

    Одна из защитных реакций хлоропластов на избыточный свет является их способность к изменению ориентировки и к перемещению в клетке, ярко выраженная у световых растений.

    На ярком свету хлоропласты занимают в клетке постенное положение и становятся «ребром» к направлению лучей. При слабом освещении они распределяются в клетке диффузно или скапливаются в ее нижней части.

    Рис. 5.22. Различные величины хлоропластов у теневыносливых

    (А) и светолюбивых (Б) растений:

    1 — тисе; 2— лиственница; 3 — копытень; 4 — чистяк весенний (По Т. К. Горышиной, Е. Г. Пружиной, 1978)
    1   ...   12   13   14   15   16   17   18   19   ...   104


    написать администратору сайта