Главная страница

экспертные системы. Экспертные системы как прикладная область искусственного интеллекта


Скачать 179.5 Kb.
НазваниеЭкспертные системы как прикладная область искусственного интеллекта
Анкорэкспертные системы.doc
Дата04.04.2018
Размер179.5 Kb.
Формат файлаdoc
Имя файлаэкспертные системы.doc
ТипЛитература
#17587
КатегорияИнформатика. Вычислительная техника
страница1 из 4
  1   2   3   4

Экспертные системы как прикладная область искусственного интеллекта
Оглавление
Введение
1. Экспертные системы, их особенности
1.1. Определение экспертных систем, достоинство и назначение
1.2. Классификация экспертных систем
1.3. Отличие экспертных систем от традиционных программ
1.4. Области применения экспертных систем
2. Структура, этапы разработки экспертных систем
2.1.Основные компоненты экспертных систем
2.2. Классификация инструментальных средств экспертных систем
2.3. Организация знаний в экспертных системах
2.4. Технология разработки экспертных систем
Заключение
Литература
Введение

Экспертные системы возникли как значительный практический результат в применении и развитии методов искусственного интеллекта - совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.
Область искусственного интеллекта имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем, машинный перевод, распознавание изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии игр.
Экспертная система - это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. Экспертные системы выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение экспертных систем на предприятиях способствует эффективности работы и повышению квалификации специалистов.
Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время. В отличие от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы.
При создании экспертных систем возникает ряд затруднений. Это, прежде всего, связано с тем, что заказчик не всегда может точно сформулировать свои требования к разрабатываемой системе. Также возможно возникновение трудностей чисто психологического порядка: при создании базы знаний системы эксперт может препятствовать передаче своих знаний, опасаясь, что впоследствии его заменят «машиной». Но эти страхи не обоснованы, так как экспертные системы не способны обучаться, они не обладают здравым смыслом, интуицией. Но в настоящее время ведутся разработки экспертных систем, реализующих идею самообучения. Также экспертные системы неприменимы в больших предметных областях и в тех областях, где отсутствуют эксперты.
Причиной повышенного интереса, который экспертные системы вызывают к себе на протяжении всего своего существования, является возможность их применения к решению задач из самых различных областей человеческой деятельности.
Поэтому, для того чтобы более подробно познакомиться с экспертными системами, темой курсовой работы была выбрана - «Экспертные системы как прикладная область искусственного интеллекта». В курсовой работе будут рассмотрены основные понятия и компоненты экспертных систем, их достоинства и недостатки, различные классификации, отличия экспертных систем от других программ, этапы разработки и области применения.
1. Экспертные системы, их особенности
1.1. Определение экспертных систем, достоинство и назначение
Экспертные системы - это яркое и быстро прогрессирующее направление в области искусственного интеллекта.
Искусственный интеллект - самое молодое научное направление. Появление его было подготовлено развитием мощности вычислительных машин.
Искусственный интеллект занимает исключительное положение. Это связано со следующим:
часть функций программирования в настоящее время оказалось возможным передать машине. При этом общение с машиной происходит на языке, близком к разговорному. Для этого в ЭВМ закладывают огромную базу знаний, способы решения, процедуры синтеза, программы, а также средства общения, позволяющие пользователю легко общаться с ЭВМ.
· в связи с внедрением ЭВМ во все сферы человеческой жизни становится возможным переход к безбумажной технологии обработки информации.
· если раньше производство ориентировалось на обязательное участие человека, то в настоящее время находят применение безлюдные технологии, основанные на роботизации и автоматизации системы управления.
· интеллектуальные системы в настоящее время начинают занимать ведущее положение в проектировании образцов изделий. Часть изделий невозможно спроектировать без их участия.
Системы, относящиеся к системам искусственного интеллекта в настоящее время:
· экспертные системы. Первые системы, которые нашли широкое применение. Их элементы используются в системах проектирования, диагностики, управления и играх. Основаны на вводе знаний высококвалифицированных специалистов (экспертов) в ЭВМ и разработке специальной системы по их использованию.
· системы естественно-языкового общения (подразумевается письменная речь). Данные системы позволяют производить обработку связанных текстов по какой-либо тематике на естественном языке.
· системы речевого общения.
· системы обработки визуальной информации. Находят применение в обработке аэрокосмических снимков, данных, поступающих с датчиков.
· системы машинного перевода. Подразумеваются естественные языки человеческого общения.
Экспертная система - это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. Экспертная система, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы экспертных систем, определённым образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы.
Экспертные системы выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, экспертные системы решают задачи в узкой предметной области (конкретной области экспертизы) на основе дедуктивных рассуждений. Такие системы часто оказываются способными найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путём привлечения эвристик, то есть правил, взятых «с потолка», что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.
Главное достоинство экспертных систем - возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.
Практическое применение искусственного интеллекта на машиностроительных предприятиях и в экономике основано на экспертных системах, позволяющих повысить качество и сохранить время принятия решений, а также способствующих росту эффективности работы и повышению квалификации специалистов.
1.2. Классификация экспертных систем

Схема классификации
Класс «экспертные системы» сегодня объединяет несколько тысяч различных программных комплексов, которые можно классифицировать по различным критериям.
Классификация по решаемой задаче
Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.
Пример:
· обнаружение и идентификация различных типов океанских судов - SIAP;
· определение основных свойств личности по результатам психодиагностического тестирования в системах АВТАН-
ТЕСТ и МИКРОЛЮШЕР и других.
Диагностика. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность - это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры («анатомии») диагностирующей системы.
Пример:
· диагностика и терапия сужения коронарных сосудов - ANGY;
· диагностика ошибок в аппаратуре и математическом обеспечении ЭВМ - система СRIB и другие.
Мониторинг. Основная задача мониторинга - непрерывная интерпретация данных в I реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы - «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учёта временного контекста.
Пример:
· контроль за работой электростанций СПРИНТ, помощь
диспетчерам атомного реактора - REACTOR;
· контроль аварийных датчиков на химическом заводе - FALCON и другие.
Проектирование. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов - чертёж, пояснительная записка и так далее. Основные проблемы здесь - получение чёткого структурного описания знаний об объекте и проблема «следа». Для организации эффективного проектирования и, в ещё большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей экспертной системы: процесс вывода и процесс объяснения.
Пример:
· проектирование конфигураций ЭВМ VАХ - 11/780 в системе ХСОN (или R1), проектирование БИС - САDHELР;
· синтез электрических цепей - SYN и другие.
Прогнозирование. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.
Пример:
· предсказание погоды - система WILLARD;
· оценки будущего урожая - РLANT;
· прогнозы в экономике - ЕСОN и другие.
Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких экспертных системах используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.
Пример:
· планирование поведения робота - STRIPS;
· планирование промышленных заказов - ISIS;
· планирование эксперимента - МОLGЕN и другие.
Обучение. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе способны диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.
Пример:
· обучение языку программирования Лисп в системе «Учитель Лиспа»;
· система РROUSТ - обучение языку Паскаль и другие.
В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в следующем: если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально строится из решений компонентов или подпроблем. Задача анализа - это интерпретация данных, диагностика; к задачам синтеза относятся проектирование, планирование. Комбинированные задачи: обучение, мониторинг, прогнозирование.
Классификация по связи с реальным временем
Статические экспертные системы разрабатываются в предметных областях, в которых база знаний и интерпретируемые данные не меняются во времени. Они стабильны.
Пример.
Диагностика неисправностей в автомобиле.
Квазидинамические экспертные системы интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.
Пример. Микробиологические экспертные системы, в которых снимаются лабораторные измерения с технологического процесса один раз в 4-5 ч. (например, производство лизина) и анализируется динамика полученных показателей по отношению к предыдущему измерению.
Динамические экспертные системы работают в сопряжении с датчиками объектов в режиме реального времени с непрерывной интерпретацией поступаемых данных.
Пример. Управление гибкими производственными комплексами, мониторинг в реанимационных палатах и так далее.
Классификация по типу ЭВМ
На сегодняшний день существуют:
· экспертные системы для уникальных стратегически важных задач на суперЭВМ (Эльбрус, CRAY, CONVEX и другие.);
· экспертные системы на ЭВМ средней производительности (типа mainfrave);
· экспертные системы на символьных процессорах и рабочих станциях (SUN, АРОLLО);
· экспертные системы на мини- и супермини-ЭВМ (VАХ, micro-VАХ и другие);
· экспертные системы на персональных компьютерах (IВМ РС, МАС II и подобные).
Классификация по степени интеграции с другими программами
Автономные экспертные системы работают непосредственно в режиме консультаций с пользователем для специфических «экспертных» задач, для решения которых не требуется привлекать традиционные методы обработки данных (расчёты, моделирование и так далее.).
Гибридные экспертные системы представляют программный комплекс, агрегирующий стандартные пакеты прикладных программ (например, математическую статистику, линейное программирование или системы управления базами данных) и средства манипулирования знаниями. Это может быть интеллектуальная надстройка над ППП или интегрированная среда для решения сложной задачи с элементами экспертных знаний.
Несмотря на внешнюю привлекательность гибридного подхода, следует отметить, что разработка таких систем являет собой задачу, на порядок более сложную, чем разработка автономной экспертной системы. Стыковка не просто разных пакетов, а разных методологий (что происходит в гибридных системах) порождает целый комплекс теоретических и практических трудностей.
1.3. Отличие экспертных систем от традиционных программ

Один из способов определить экспертные системы - это сравнить их с обычными программами. Главное различие состоит в том, что экспертные системы манипулируют знаниями, тогда как обычные программы манипулируют данными. Фирма Теknowledge, которая занимается производством коммерческих экспертных систем, описывает эти различия, как показано в следующей таблице.

Обработка данных

Инженерия знаний

Представление и использование данных
Алгоритмы
Повторный прогон
Эффективная обработка больших баз данных

Представление и использование знаний
Эвристики
Процесс логического вывода
Эффективная обработка баз знаний
Специалисты в области искусственного интеллекта имеют несколько более узкое (и более сложное) представление о том, что такое экспертная система. Под экспертной системой понимается программа для ЭВМ, обладающая следующими свойствами.
Компетентность. Экспертная система должна демонстрировать компетентность, то есть достигать в конкретной предметной области того же уровня профессионализма, что и эксперты-люди. Но просто уметь находить хорошие решения ещё недостаточно. Настоящие эксперты не только находят хорошие решения, но часто находят их очень быстро, тогда как новичкам для нахождения тех же решений, как правило, требуется намного больше времени. Следовательно, экспертная система должна быть умелой - она должна применять знания для получения решений эффективно и быстро, используя приёмы и ухищрения, какие применяют эксперты-люди, чтобы избежать громоздких или ненужных вычислений. Для того чтобы по-настоящему подражать поведению эксперта-человека, экспертная система должна обладать робастностъю. Это подразумевает не только глубокое, но и достаточно широкое понимание предмета. А этого можно достичь, используя общие знания и методы нахождения решений проблем, чтобы уметь рассуждать исходя из фундаментальных принципов в случае некорректных данных или неполных наборов правил. Это один из наименее разработанных методов в современных экспертных системах, но именно им успешно пользуются эксперты-люди.
Символьные рассуждения. Эксперты, решая какие-то задачи (особенно
такого типа, для решения которых применяются экспертные системы), обходятся без решения систем уравнений или других трудоёмких математических вычислений. Вместо этого они с помощью символов представляют понятия предметной области и применяют различные стратегии и эвристики в процессе манипулирования этими понятиями. В экспертной системе знания тоже представляются в символьном виде, то есть наборами символов, соответствующих понятиям предметной области. В искусственном интеллекте символ - это строка знаков, соответствующая содержанию некоторого понятия реального мира.
Примеры символов:
Продукт
ответчик
0.8
Эти символы можно объединить, чтобы выразить отношения между ними. Когда эти отношения представлены в программе искусственного интеллекта, они называются символьными структурами.
Примеры символьных структур:
(ДЕФЕКТНЫЙ продукт)
(ВЫПУЩЕННЫЙ ответчиком продукт)
(РАВНО (ОТВЕТСТВЕННОСТЬ ответчик) 0.8)
Эти структуры можно интерпретировать следующим образом: «продукт является дефектным», «продукт был выпущен в продажу ответчиком» и «ответственность ответчика равна 0.8».
При решении задачи экспертная система вместо выполнения стандартных математических манипулирует этими символами. Нельзя сказать, что экспертная система вообще не производит математических расчётов, она их делает, но в основном она приспособлена для манипулирования символами. Вследствие подобного подхода представление знаний - выбор, форма и интерпретация используемых символов - становится очень важным. Кроме того, эксперты могут получить задачу, сформулированную неким произвольным образом, и преобразовать её к тому виду, который в наибольшей степени соответствует быстрому получению решения или гарантирует его максимальную эффективность. Эта способность переформулирования задачи - как раз то свойство, которое должно быть присуще экспертной системе для того, чтобы приблизить их мастерство к уровню экспертов-людей. К сожалению, большинство существующих в настоящее время экспертных систем не обладают этим свойством.
  1   2   3   4


написать администратору сайта