Ответы на экзаменационные вопросы по физиологии. Экзаменационные вопросы по Физиологии 2010 год процессы происхождения биопотенциала покоя. Роль порогового раздражения в возникновении возбуждения. Особенности местного и распространяющегося процессов возбуждения
Скачать 1.5 Mb.
|
Нервная регуляция осуществляется вегетативной нервной системой через чревные нервы. Активация симпатической нервной системы вызывает сужение сосудов почки и уменьшение диуреза. Конечная моча характеризуется следующими признаками: 1.ряд веществ, входящих в состав плазмы крови, полностью отсутствует в конечной моче: в норме это белки, аминокислоты, глюкоза; 2. некоторые вещества присутствуют в конечной моче в значительно больших концентрациях, чем в плазме: мочевина — в 65 раз, сульфаты — в 80 раз, мочевая кислота — в 12 раз; таким образом проявляется концентрирующая функция почек; 3.состав и реакция мочи непостоянны; например, при алкалозе моча становится более основной, а при ацидозе — более кислой. 4. образуется 1,5-2 л. конечной мочи за сутки. Диурез суточный - количество мочи, выделенное человеком за сутки. У здорового человека суточный диурез составляет 75 - 80% от принятой накануне жидкости. При нормальном питьевом режиме суточный диурез в среднем равен 1,5 л. При этом днем человек выделяет 2/3 и ночью 1/3 этого объема мочи. #92. Механизм формирования жажды. Мотивация жажды: Возбуждение в нейронах супраоптических и паравентрикулярных ядер гипоталамуса гиперосмолярной кровью формирует ощущение и мотивацию жажды. Осморецепторы определяют обратную афферентацию в гипоталамические центры по блуждающим нервам от ЖКТ. При гиперосмолярном состоянии афферентация усиливается. Гидратация и дегидратация соединительной ткани приводит к тому, что из нее в кровь поступают специальные молекулы – олигопептиды, простагландины, которые несут информацию об осмотической потребности. Гиперосмолярная кровь. При гиперосмолярной крови сигнализация от осморецепторов, адресуясь в конечном счете к нейронам супраоптическич и паравентрикулярных ядер, усиливает образование в них вазопрессина. Вазопрессин, поступая в нейрогипофиз и в кровь, достигает своих органов-мишеней — восходящих частей петли нефронов и собирательных трубок. Происходит задержка воды в организме, что противодействует росту осмо-лярности. Дополнительно к этому за счет снижения секреции АКТГ и аль-достерона усиливается выделение натрия из организма. Под влиянием вазопрессина в мозге нарастает содержание ангиотензина II. Формируется мотивация жажды и на ее основе — питьевое повеление, приводящее к нормализации осмотического давления. #93. Узловые механизмы функциональной системы, поддерживающей оптимальный для метаболизма уровень осмотического давления. Оптимальный для метаболизма уровень осмотического давления определяется различным соотношением воды и ионов в организме. Оптимальным для метаболизма тканей осмотическим состоянием считается нормоосмолярное (нормоосмотическое). Преобладание солей и, наоборот, снижение воды в организме формируют гиперосмолярное (гиперосмотическое) состояние. Уменьшение содержания солей или, наоборот, при нормальном количестве солей увеличение содержания воды в организме формирует гипоосмолярное (гипоосмотическое) состояние. Предконечный результат. Функциональная система, определяющая уровень осмотического давления, имеет предконечный результат, тесно связанный с показателями осмотического давления в тканях — осмотическое давление крови. Этот предконечный результат выступает в предупредительной роли, демпфируя резкие перепады осмотического давления в тканях. Этому результату в свою очередь предшествуют другие — величина осмотического давления в разных отделах желудочно-кишечного тракта, а также специфические эмоциональные чувства жажды и солевой мотивации. #94 Охарактеризуйте общие принципы строения и функции анализаторов. Анализатор – совокупность возбудимых структур центральной и периферической нервной системы, осуществляющих восприятие и анализ воздействий окружающей среды и воздействий, исходящих от самого организма. Классические представления Павлова об анализаторе включают в его состав три части: периферический отдел, проводниковый отдел и центральный конец. Периферический отдел анализаторов включает, как правило, рецепторы, хотя в некоторых анализаторах, например зрительном, в этот отдел могут быть включены и первичные афферентные нейроны. Периферический отдел анализатора является составной частью любого органа чувств, который, помимо рецепторов, включает специальные вспомогательные образования для наилучшего восприятия действующего раздражителя. Например, глаз как орган зрения, помимо сетчатки (фоторецепторы), включает глазное яблоко, его мышцы, веки и др. Проводниковый отдел анализаторов включает не только нервные волокна, непосредственно отходящие от рецепторов, но и все афферентные нейроны, обеспечивающие первичный анализ и передачу возбуждений в центральный отдел анализатора. Возникающие в рецепторах импульсы возбуждения распространяются по проводящим путям в виде электрических потенциалов. Во всех нервных волокнах потенциалы являются однотипными по внешнему виду, но в потоке импульсов возбуждения в их своеобразном рисунке — паттерне — закодирована специфическая информация о параметрах действующего раздражителя. Анализ этой информации начинается как на уровне первичных афферентных нервных клеток, так и в последующих спинальных, стволовых и подкорковых ядрах. Центральный отдел анализаторов. Различные проводящие афферентные пути через возбуждение соответствующих подкорковых структур в конечном счете приносят импульсы возбуждения в соответствующие области коры большого мозга, которые считаются высшим центральным конечным звеном любого анализатора. Вместе со специфическим афферентным возбуждением в кору поступает и неспецифическое восходящее возбуждение, которое формируется на уровне подкорковых активирующих структур мозга — ретикулярной формации, гипоталамуса и др. Передача импульсов от рецепторов по проводящим путям к коре большого мозга осуществляется по цепям нейронов в различных ядрах, расположенных на разных уровнях ЦНС. За счет конвергенции и дивергенции возбуждений в нейронных цепях в этих нервных центрах осуществляются передача и обработка информации. Роль анализаторов в деятельности функциональных систем: Физиологические особенности каждого анализатора в отдельности определяются его специфическими структурами передачи возбуждений от рецепторов в ЦНС, участием в системных процессах целого организма. Адекватное поведение живых организмов в окружающей среде не является пассивным отражением воздействующих раздражителей. В большей степени организм настойчиво ищет потребные раздражители и активно к ним стремится, избирательно настраивая по отношению к ним свои анализаторы. Активное стремление субъектов к раздражителям внешней среды определяется прежде всего их исходными доминирующими потребностями и пропускной способностью к передаче информации соответствующего анализатора. У человека наибольшей пропускной способностью обладает зрительный анализатор, который в единицу времени передает в ЦНСболее 70 % информации; 25—28 % информации доставляет в ЦНС слуховой анализатор и 2—5 % информации — остальные анализаторы. #95 Рассмотрите важнейшие физиологические св-ва рецепторов. Дайте классификацию рецепторов. Рецепторы участвуют впроцессе восприятия и трансформации механической, термической, электромагнитной и химической энергии в нервный сигнал или сложную последовательность мембранных и цитоплазматических процессов. Существуют различные классификации рецепторов, основанные на их физиологических характеристиках. Психофизиологическое состояние, связанное с модальностью ощущения, в соответствии с которым выделяют зрительные, слуховые, осязательные, обонятельные, вкусовые, холодовые, тепловые, болевые рецепторы. Локализация. Большинство сенсорных рецепторов воспринимает раздражения из окружающей среды, т.е. являются внешними, или экстерорецепторами. К ним относятся фоторецепторы, слуховые, тактильные, температурные и хеморецепторы, расположенные на поверхности тела и в начальных отделах пищеварительного тракта и дыхательных путей. Информация о состоянии внутренней среды организма воспринимается интерорецепторами внутренних органов, сосудов, опорно-двигательного аппарата — мышц, сухожилий, костей, суставов. Структура рецепторов. Рецепторы могут быть представлены свободными нервными окончаниями; окончаниями, покрытыми особой капсулой (инкапсулированные; иметь вид палочек, колбочек, ветвей, волосков. Некоторые рецепторы объединяются в сложно организованные множества — сетчатку глаза, кортиев орган внутреннего уха и др. В результате рецепции действующего на организм раздражения и поступающей в мозг на ее основе сигнализации формируется субъективно переживаемое ощущение, являющееся источником познания внешнего мира. Специализация рецепторов. Характерным свойством рецепторов является их высокая генетически детерминированная специализация к восприятию адекватного раздражителя. В соответствии с природой или характером раздражения их делят на: • тактильные рецепторы кожи; • слуховые, вестибулярные и гравитационные рецепторы внутреннего уха; • рецепторы опорно-двигательного аппарата (растяжения, суставные, мышц); • барорецепторы сердца и сосудов; • хеморецепторы обоняния, вкуса, кровеносных сосудов и тканей; • фоторецепторы сетчатки — нервные элементы, возбуждаемые электромагнитными волнами дающие ощущения ахроматического — черно-белого (палочки) и хроматического — цветового (колбочки) видения; • терморецепторы кожи, внутренних органов и ЦНС, реагирующие на изменения температуры окружающей среды и внутренней среды организма. Кроме этого, выделяют рецепторы вибрации, рецепторы волосяных фолликулов, ганглиев. Модальность. Некоторые (мономодальные) рецепторы приспособлены для восприятия лишь одного вида раздражения, например вкусовые рецепторы сладкого; другие (полимодальные) — для восприятия нескольких видов раздражителей, например ноцицепторы кожи, участвующие в формировании болевого ощущения при любом механическом, химическом, температурном повреждающем воздействии. Дистантные - воспринимают информацию от источника, расположенного на некотором расстоянии от них (зрительные, слуховые) Контактные— при непосредственном соприкосновении с раздражителем (тактильные). Чувствительность. Большинство рецепторов обладает высокой чувствительностью по отношению к адекватным раздражителям Низкопороговые — наиболее чувствительные рецепторы — расположены в коже (тактильные, или осязательные, волоски), в сетчатке глаза (палочки), в обонятельных луковицах. К высокопороговым — наименее чувствительным — относятся рецепторы сетчатки (колбочки), ответственные за хроматическое (цветовое) зрение, и ноцицепторы кожи, возбуждающиеся при механическом воздействии повреждающей интенсивности. Адаптация— изменение порога чувствительности рецептора при постоянном действии на него раздражителя. #96 Проанализируйте ф-ции вспомогательного аппарата, оптической системы и рецепторного аппарата зрительного анализатора. Уметь определять остроту зрения по таблице и интерпретировать полученные результаты. Светопреломляющие структуры глаза: роговица, радужная оболочка, хрусталик, камерная влага и стекловидное тело - обеспечивают формирование на сетчатке реального, уменьшенного и перевернутого изображения объекта внешнего мира. Радужная оболочка образует зрачок. Светопреломляющая способность хрусталика и диаметр зрачка изменяются при сокращении гладких мышц глаза. Зрачковая реакция на свет является механизмом снижения количества света, падающего на сетчатку при сильном освещении (сужение зрачка), или повышения количества света при слабом освещении за счет увеличения ширины зрачка. Физиологические механизмы опознания зрительных объектов начинаются с первичной обработки зрительной информации в сетчатке глаза, которая является периферической рецепторной структурой зрительного анализатора. Сетчатка расположена на внутренней поверхности задней сферы глазного яблока и состоит из клеток пигментного эпителия, фоторецепторов и четырех слоев, образованных различными нервными клетками. Фоторецепторы сетчатки: основными зрительными рецепторами, расположенными в сетчатке, являются палочки и колбочки. У человека рецепторный слой сетчатки состоит из 120 млн палочек и 6 млн колбочек. Колбочки воспринимают цвета и функционируют в условиях яркой освещенности объектов, в то время как палочки воспринимают световые потоки в условиях сумерек. Фоторецепторы сетчатки содержат светочувствительные пигменты, которые обесцвечиваются при действии света. В палочках содержится пигмент родопсин, в колбочках — йодопсин. Процесс преобразования энергии в фоторецепторе начинается с поглощения фотона молекулой пигмента. Конформационное изменение молекул пигмента активирует ионы Са 2+ , которые посредством диффузии достигают натриевых каналов, вследствие чего проводимость для Na + снижается. В результате снижения натриевой проводимости возникает увеличение электроотрицательности внутри фоторецепторной клетки по отношению к внеклеточному пространству. Сетчатка представляет собой довольно сложную нейронную сеть с горизонтальными и вертикальными связями между фоторецепторами и клетками. Биполярные клетки сетчатки передают сигналы от фоторецепторов в слой ганглиозных клеток и к амакриновым клеткам (вертикальная связь). Горизонтальные и амакриновые клетки участвуют в горизонтальной передаче сигналов между соседними фоторецепторами и ганглиозными клетками. #97 Охарактеризуйте особенности проводникового и коркового отделов зрительного анализатора, физиологический мех-м и значение бинокулярного зрения. Уметь определять поле зрения с помощью периметра Форстера. Зрительные пути: Аксоны ганглиозных клеток дают начало зрительному нерву. Правый и левый зрительные нервы сливаются у основания черепа, образуя перекрест, где нервные волокна, идущие от внутренних половин обеих сетчаток, пересекаются и переходят на противоположную сторону. Волокна, идущие от наружных половин каждой сетчатки объединяются вместе с перекрещенным пучком аксонов из контралатерального зрительного нерва, образуя зрительный тракт. Зрительный тракт заканчивается в первичных центрах зрительного анализатора, к которым относятся латеральные коленчатые тела, верхние бугорки четверохолмия и претектальная область ствола мозга. Латеральные коленчатые тела являются первой структурой ЦНС, где происходит переключение импульсов возбуждения на пути между сетчаткой и корой большого мозга. Нейроны сетчатки и латерального коленчатого тела производят анализ зрительных стимулов, оценивая их цветовые характеристики, пространственный контраст и среднюю освещенность в различных участках поля зрения. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и левого глаза. Верхние бугорки четверохолмия. Нервные клетки реагируют на движущиеся световые стимулы, включены в механизмы управления целенаправленным движением глаз. Бинокулярное зрение - механизм регуляции одновременного движения правого и левого глазных яблок, который управляются нейронами, находящимися как в подкорковых структурах, так и в коре большого мозга. Центры бинокулярного зрения находятся в области ретикулярной формации среднего мозга, в верхних бугорках четверохолмия. Ретикулярная формация среднего мозга является интегрирующим центром, получающим информацию по афферентным путям не только от верхних бугорков четверохолмия, но и от фоторецепторов сетчатки. Ядра глазодвигательных нервов находятся также под влиянием мозжечка. В мозжечке вестибулярные и зрительные сигналы интегрируются с сигналами, отражающими положение головы и глаз. Цветное зрение: восприятие глазом того или иного тона зависит от длины волны излучения: длинноволновые – красный и оранжевый; средневолновые – желтый и зеленый; коротковолновые – голубой, синий, фиолетовый. За пределами хроматической части спектра располагается невидимое невооруженным глазом ультрафиолетовое излучение. В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазией. #98 Охарактеризуйте строение и ф-ции рецепторного, приводникового и коркового отделов слухового анализатора, методы исследования. Максимальная чувствительность слуха человека лежит в области частот от 1000 до 4000 Гц. В кортиевом органе различают внутренние и наружные волосковые клетки. Фонорецепторы кортиева органа являются вторично чувствующими рецепторами. Афферентные биполярные слуховые нейроны находятся в спиральном ганглии. От каждой клетки спирального ганглия один отросток идет на периферию к волосковым клеткам кортиева органа, а другой в составе слухового нерва направляется в ЦНС. Звук вызывает колебания эндолимфы улиткового протока попеременно в сторону вестибулярной и в сторону барабанной лестницы. Результатом такого движения является смещение основной и покровной мембраны кортиева органа относительно друг друга. Сгибание цилий является для волосковых клеток адекватным стимулом. При этом в волосковых клетках возникает рецепторный потенциал, который вызывает высвобождение медиатора. Медиатор действует возбуждающим образом на постсинаптическую мембрану афферентного волокна биполярного нейрона спирального ганглия, что в конечном счете приводит к возникновению потенциалов действия в волокнах слухового нерва. Отдельные участки улитки воспринимают определенные звуковые частоты. Каждое нервное волокно оптимально возбуждается звуком определенной частоты. У основания кортиева органа расположены рецепторные клетки, воспринимающие низкие звуки; у вершины улитки — рецепторы, воспринимающие высокие звуки. Слуховые пути: первичные афферентные волокна распространяются сначала к вентральной и дорсальной частям кохлеарного ядра. От вентральной части вентральный тракт направляется к ипси- и контралатеральным оливарным комплексам. Таким образом, нервные клетки в каждом оливарном комплексе получают возбуждения от рецепторов правого и левого уха, что обеспечивает сравнительную оценку акустической информации. Дорсальное кохлеарное ядро служит началом дорсального слухового тракта, волокна которого переходят на противоположную сторону и там образуют синапсы с нейронами ядра латерального лемниска. После переключения в нем слуховой тракт переключается в двух ядрах — нижнем бугорке четверохолмия и медиальном коленчатом теле. Из этих образований возбуждение распространяется к центральному концу анализатора — первичной слуховой области височной доли коры большого мозга. Подкорковые слуховые центры: первичные афферентные слуховые нейроны спирального ганглия возбуждаются чистыми тонами, т.е. очень простыми звуковыми стимулами. В противоположность этому, чем дальше от улитки по слуховому тракту находятся нейроны, тем более сложные звуковые характеристики их возбуждают. В нижних бугорках четверохолмия имеются клетки, отвечающие только на частотно модулированные тоны со специфическим направлением и различной модуляцией. Другие клетки нижних бугорков четверохолмия отвечают на тоны только в том случае, если меняется их интенсивность. Корковые центры слухового анализатора: нейронные процессы, лежащие в основе оценки звука разной частоты. Одни нейроны отвечают только на начало звукового стимула, другие — только на его окончание. |