гистология ответы на экзамен Г. Ответы на экзаменационные вопросы по гистологии Часть 1. Экзаменационные вопросы по гистологии 1 Определение и задачи гистологии
Скачать 308.57 Kb.
|
Ответы на экзаменационные вопросы по гистологии №1 Определение и задачи гистологии Гистология (от греч.Histos – ткань, logos – учеяние) – наука о строении, развитии и жизнедеятельности тканей животных организмов. Гистология вместе с другими фундаментальными медико-биологическими науками изучает закономерности структурной организации живой материи, является одним из подразделений науки о жизни – биологии. Гистологию характеризуют 3 признака : 1- материя, которую она изучает, 2- методы, которые она использует, 3-законы,которые она познает. Материалом для гистологии являются ткани животных и человека, клетки, из которых состоят ткани и органы, сформированные из тканей. Гистология исследует филогенез и онтогенез тканей. По своему фундаментальному содержанию гистология рассматривается как фундаментальная наука. Актуальными задачами гистологии являются: - разработка общей теории гистологии, отражающей эволюционную динамику тканей и закономерности эмбрионального и постнатального гистогенеза; - изучение гистогенеза как комплекса координированных во времени и пространстве процессов пролиферации, дифференциации, детерминации, интеграции, адаптивной изменчивости, программированной гибели клеток и др.; - выяснение механизмов гомеостаза и тканевой регуляции (нервной, эндокринной, иммунной), а также возрастной динамики тканей; - изучение закономерностей реактивности и адаптивной изменчивости клеток и тканей при действии неблагоприятных экологических факторов и в экстремальных условиях функционирования и развития, а также при трансплантации; - разработка проблемы регенерации тканей после повреждающих воздействий и методов тканевой заместительной терапии; - раскрытие механизмов молекулярно-генетической регуляции клеточной дифференцировки, наследования генетического дефекта развития систем человека, разработка методов генной терапии и трансплантации стволовых эмбриональных клеток; - выяснение процессов эмбрионального развития человека, критических периодов развития, воспроизводства и причин бесплодия. №2 Основные периоды исторического развития гистологии. 1 период: Накопление первоначальных фактов (1595-1800г), изобретение Янсоном первого микроскопа. Микроскоп увеличивал не более чем в 20 раз, вследствие чего не использовался по назначению. Для исследований использовались одиночные линзы, увеличивающие до 200 раз. Антуан ванн Левенгук изобрел линзы, увеличивающие в 300 раз. Именно он стал основоположником научной микроскопии. Левенгук в капле воды обнаружил много живых существ. Гук, будучи физиком, изготовил более совершенный микроскоп и впервые ввел понятие «Клетка» в 1665 году. Грю, будучи ботаником, изучал части растений, кору, листья, цветы. Систему однородных элементов он назвал тканью в 1682 году. 2 период: В 1800г Франсуа Ксавье, не используя микроскоп, методом мацерации (настаивания), выделил 21 вид тканей и заложил основы гистологии под названием «Микроскопическая анатомия». Майер (1818) и Хойзингер (1821) переименовывают ее в гистологию. В 1838-1839 Шванн формирует клеточную теорию. 3 период: Период борьбы за господство клеточной теории. Под ее влиянием бурно развивается гистология, и на основе ее цитология, гематология, эндокринология, иммунология, патологическая анатомия. Клеточная теория оказала значительное воздействие на общественную жизнь людей того времени. 4 период: В 1945г. Портер и соавторы, исследуя под электронным микроскопом фибробласты, открывают ЭПС и хоронят идею о цитоплазме, как о бесструктурной системе. Новые знания о строении клеток были дополнены информацией об их функции. №3 Гистология как учебная дисциплина, ее содержание. Как учебная дисциплина гистология включает несколько разделов: 1) цитологию — учение о клетке; 2) эмбриологию — науку о развитии зародыша, закономерностях закладки и образования тканей и органов; 3) общую гистологию — учение о развитии, структуре и функциях тканей; 4) частную гистологию, изучающую микроскопическое строение органов и систем органов. Цитоло́гия (греч. κύτος — «вместилище», здесь: «клетка» и λόγος — «учение», «наука») — раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти. Эмбриология (от древнегреческого ἔμβρυον, зародыш, «эмбрион»; и -λογία, -логия) — это наука, изучающая развитие зародыша. Зародышемназывают любой организм на ранних стадиях развития до рождения или вылупления, или, в случае растений, до момента прорастания. Многими учёными, в том числе отечественными, эмбриология определяется более широко, как синоним биологии развития . Гистология (от греч. histos — ткань, logos — учение) — наука о строении, развитии и жизнедеятельности тканей животных организмов. Частная гистология служит основой для изучения микроскопического строения морфофункциональных единиц органов и органов в целом. №4 Клеточная теория – теоретическая фундаментальная основа гистологии. Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов. Клеточная теория — основополагающая для биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка происходит от другой клетки). Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом. Основные положения клеточной теории: 1) Клетка – единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет. 2) Ядро – главная составная часть клетки эукариот. 3) Новые клетки образуются только в результате деления исходных клеток. 4) Клетка – единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование. 5) Клетки многоклеточных организмов образуют ткани, ткани образуют органы. Жизнь организма в целом обусловлена взаимодействием составляющих клеток. №5 Симпласт и синцитий как формы организации протоплазмы. Симпласт – крупное образование, состоящее из цитоплазмы с множеством ядер. Примерами симпластов могут быть мышечные волокна позвоночных, наружный слой трофобласта плаценты. Симпласты возникают вторично за счет слияния отдельных клеток, или же в результате деления одних ядер без разделения цитоплазмы , без цитотомии. Синцитий (соклетия) – первичная надклеточная форма организации жизни, представляющая собой протоплазматическую решетку, в узлах которой лежат ядра. У человека синцитиально связанные между собой клетки сохранились в семеннике, где эти связи синхронизируют развитие сперматоцитов. №6 Характеристика межклеточного вещества. Межклеточное вещество – продукт жизнедеятельности определенных групп клеток.Составная часть соединительной ткани позвоночных и многих беспозвоночных животных, включающая соединительнотканные волокна и аморфное основное вещество, выполняющая механическую, опорную, защитную и трофическую функции. Межклеточное вещество образуется у зародыша из белков, углеводов, липидов, продуцируемых клетками эмбриональной соединительной ткани, начиная со стадии гаструлы. Гистогенез межклеточного вещества продолжается и в постэмбриональном периоде. Наибольшая роль в образовании межклеточного вещества принадлежит фибробластам, хондробластам, остеобластам. Полагают, что в образовании межклеточного вещества волокнистой соединительной ткани могут участвовать гистиоциты, лаброциты (тучные клетки) и другие. Соединительнотканные волокна межклеточного вещества могут быть представлены коллагеновыми, эластическими, ретикулярными, или ретикулиновыми (аргирофильными), и другими волокнами, от чего зависит прочность, эластичность и в определенной степени архитектоника соединительной ткани органов (дерма различных участков кожи, сухожилия, строма кроветворных органов и так далее). Аморфное основное вещество, окружающее соединительнотканные волокна и клетки соединительной ткани, состоит из высокополимерных соединений, от концентрации и состава которых в различных видах соединительной ткани зависят физические, химические и биологические свойства межклеточного вещества (вязкость, гидрофильность, интенсивность метаболических процессов, тургор и другие). Состав волокон и аморфного вещества неодинаков в различных видах соединительной ткани, в различных ее топографических участках межклеточное вещество может быть минерализованным. При этом кристаллы минералов (фосфорнокислый кальций, углекислый кальций и другие) импрегнируют органическую основу межклеточного вещества твердых скелетных тканей (дентин, кость). С возрастом межклеточное вещество претерпевает инволюционные изменения: меняется соотношение основного вещества и волокон — масса волокнистых структур коллагена и плотность его «упаковки» возрастают, а масса основного вещества уменьшается, происходят конденсация эластических волокон, глубокие физико-химические изменения межклеточного вещества. В эксперименте на животных выявлено, что недостаточное питание задерживает развитие возрастных изменений коллагена, а «атерогенная» диета вызывает его постарение. Характером строения межклеточного вещества в значительной мере определяются функциональными особенности тех или иных видов соединительной ткани. Чем плотнее межклеточное вещество, тем сильнее выражена механическая, опорная функция, которая достигает наибольшего развития в костной ткани. Трофическая функция, напротив, лучше обеспечивается полужидким по консистенции межклеточным веществом (интерстициальная соединительная ткань, окружающая кровеносные сосуды). Коллагеновые и эластические волокна, входящие в состав межклеточного вещества, построены из склеропротеинов — коллагена и эластина. Из коллагена состоят и ретикулиновые волокна отличающиеся повышенным содержанием углеводов и наличием липидов. В эластических волокнах имеется микрофибриллярный компонент, отличный от эластина по аминокислотному составу. Этот же компонент образует особую разновидность немногочисленных, сходных с эластическими волокнами межклеточного веществ (окситалановых), волокон резистентных к действию эластазы. Свойства основного вещества определяются преимущественно углеводно-белковыми биополимерами — гликозаминогликанами и гликопротеидами. Наличие гликозаминогликанов придает основному веществу межклеточного вещества выраженную базофильность. Качественные и количественные соотношения этих биополимеров, отличающихся интенсивным метаболизмом, различны в разных видах соединительной ткани. №7 Клетка – главная форма организации протоплазмы. Клетка – ограниченная активной мембраной , упорядоченная система биополимеров, образующих ядро и цитоплазму, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом. В своем историческом развитии протоплазма приобретает разнообразные формы, среди которых различают первичные и вторичные. Первичной формой протоплазмы является эукариотическая клетка многоклеточных. Это главная, исторически сложившаяся форма организации живой материи, обладающая всеми основными свойствами жизни, имеющая ядро, цитоплазму и цитоплазматические органеллы. Вторичные формы – весь многоклеточный мир. № 8 Величина и форма клеток. Факторы их обуславливающие. Величина клетки определяется ядерно-цитоплазматическими отношениями и отношением площади поверхности к объему цитоплазмы, которые должны быть постоянными. Контактное торможение, которое определяет положение и пространство, занимаемое клеткой. Смещение константы ведет либо к делению клетки, либо к ее гибели. Форма клетки: Веретеновидная форма – клетка имеет утолщенную среднюю часть, брюшко, где лежит ядро и основные органеллы и 2 конца, фиксирующие к субстрату. (миоциты внутренних полых органов). Клетка призматической формы находится на поверхности органов , несут защитную функцию, приближены друг к другу (эпителиальные клетки). Клетки шаровидной формы – расположены не плотно и находятся в жидкости (лейкоциты). Клетки звездчатой формы (нейроны). Между формой и содержанием, структурой и функцией имеется диалектическое взаимодействие. Основными структурными компонентами клетки являются: 1) клеточная поверхность (надмембранный комплекс, плазматическая мембрана, подмембранный комплекс); 2) цитоплазма (гиалоплазма, органеллы и включения); 3) ядро (кариолемма, ядрышко, хроматин, кариолимфа). №9 Классификация цитоплазматических органелл.
№10 Клеточная поверхность и ее функции Клеточная поверхность выполняет следующие функции: разграничительная, барьерно-защитная, рецепторная, транспортная, контактная, опорно-механическая, двигательная. Ее основными химическими компонентами являются: липиды (40%), белки (50%) и углеводы (10%). Соотношение этих веществ может варьировать в зависимости от функциональной активности клетки. Надмембранный комплекс – это гликокаликс клетки, образован молекулами олигосахаридов, связанных с интегральными и покровными белками плазмолеммы. В состав гликокаликса входят: мальтоза, глюкоза, галактоза. Они образуют над плазмолеммой гетерополиморфные ветвящиеся цепочки. Гликокаликс осуществляет сортировку макромолекул из межклеточной среды, их удержание. Плазматическая мембрана – образована слоем гидрофильных и гидрофобных липидов. Между липидами вставлены молекулы интегральных и полуинтегральных белков. Снаружи липидного комплекса лежат покровные белки. Плазматическая мембрана имеет каналы для натрия, калия, кальция, хлора и рецепторы к медиаторам, гормонам и цитокинам. Подмембранный комплекс – слой глобулярных белков цитозоля и фиксированных к плазмолемме концов микротрубочек и филаментов клеточного скелета. Производные клеточной поверхности: микроворсинки, реснички и жгутики. Транспорт: 1)Простая диффузия – перемещение веществ по градиенту концентрации. 2)Облегченная диффузия - пассивный транспорт воды из клетки в клетку через специальные каналы. 3)Активный транспорт – перенос веществ с затратой энергии. 4)Экзо- и эндоцитоз. №11 Основные функции клетки. 1)Деление клетки –вид размножения клеток. Наиболее распространенным способом деления соматической клетки является митоз. Во время митоза клетка проходит ряд последовательных стадий, в результате которых каждая дочерняя клетка получает такой же набор хромосом, как и у материнской клетки. 2)Обмен веществ. Основная функция клетки. Из межклеточного вещества в клетку постоянно поступают питательные вещества и кислород, и выделяются продукты распада. Обмен веществ выполняет 2 функции: обеспечение клетки строительным материалом. Из веществ, поступающих в клетку, непрерывно происходит биосинтез белков, углеводов, липидов, из которых впоследствии формируются органеллы. Вторая функция – это обеспечение клетки энергией. (Энергетический и пластический обмен). 3)Раздражимость – реакция на физические и химические воздействия окружающей среды. В возбужденном состоянии разные клетки выполняют свойственные им функции. №12 Синтетический аппарат клетки. |