Главная страница
Навигация по странице:


  • Униполярные нейроны

  • Мультиполярные нейроны

  • Принцип динамической поляризации

  • 70 Глия, ее разновидности и функции. Нейроглия

  • гистология ответы на экзамен Г. Ответы на экзаменационные вопросы по гистологии Часть 1. Экзаменационные вопросы по гистологии 1 Определение и задачи гистологии


    Скачать 308.57 Kb.
    НазваниеЭкзаменационные вопросы по гистологии 1 Определение и задачи гистологии
    Анкоргистология ответы на экзамен Г
    Дата14.10.2022
    Размер308.57 Kb.
    Формат файлаdocx
    Имя файлаОтветы на экзаменационные вопросы по гистологии Часть 1.docx
    ТипЭкзаменационные вопросы
    #733924
    страница9 из 13
    1   ...   5   6   7   8   9   10   11   12   13

    Гладкие мышечные ткани


    По происхождению различают три группы гладких (или неисчерченных) мышечных тканей — мезенхимные, эпидермальные и нейральные.

    Мышечная ткань мезенхимного происхождения


    Гистогенез. Стволовые клетки и клетки-предшественники гладкой мышечной ткани, будучи уже детерминированными, мигрируют к местам закладки органов. Дифференцируясь, они синтезируют компоненты матрикса и коллаген базальной мембраны, а также эластин. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.

    Структурно-функциональной единицей гладкой, или неисчерченной, мышечной ткани является гладко-мышечная клетка, или гладкий миоцит — это веретеновидная клетка длиной 20—500 мкм, шириной 5—8 мкм. Ядро клетки палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены в цитоплазме около полюсов ядра. Аппарат Гольджи и гранулярная эндо плазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.

    Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно, точнее косо-продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Эти участки хорошо видны на электронных микрофотографиях как плотные тельца.

    Миозиновые филаменты находятся в деполимеризованном состоянии. Мономеры миозина располагаются рядом с филаментами актина. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует впячивания — кавеолы, в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков (здесь из пузырьков освобождается кальций). Это влечет за собой как полимеризацию миозина, так и взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и «миофибриллы» распадаются. Таким образом, актино-миозиновые комплексы существуют в гладких миоцитах только в период сокращения.

    Гладкие миоциты располагаются без заметных межклеточных пространств и разделены базальной мембраной. На отдельных участках в ней образуются «окна», поэтому плазмолеммы соседних миоцитов сближаются. Здесь формируются нексусы, и между клетками возникают не только механические, но и метаболические связи. Поверх «чехликов» из базальной мембраны между миоцитами проходят эластические и ретикулярные волокна, объединяющие клетки в единый тканевой комплекс. Ретикулярные волокна проникают в щели на концах миоцитов, закрепляются там и передают усилие сокращения клетки всему их объединению.

    Регенерация. Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается (рабочая гипертрофия клеток). Не исключена, однако, и пролиферация клеток (т.е. гиперплазия).

    В составе органов миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки. Гладкая мышечная ткань мезенхимного происхождения представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы.

    Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы к конкретным биологически активным веществам. Поэтому и на многие лекарственные препараты их реакция неодинакова.

    Гладкая мышечная ткань эпидермального происхождения


    Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с железистыми секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках — сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.

    Гладкая мышечная ткань нейрального происхождения


    Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы — суживающую и расширяющую зрачок.

    64

    Этапы исторического развития нервной системы.

    I этап – Гуморальный этап. Связь организма с окружающей средой осуществляется посредством специфической жидкости, находящейся как вне, так и внутри его. Этот этап характерен для одноклеточных организмов.
    II этап  ^ Диффузный этап. Связь организма с внешней средой осуществляется при помощи нейронов, отростки которых, контактируя друг с другом, образуют сеть. Эта сеть пронизывает все тело многоклеточного организма, потому при раздражении сокращается все тело. Сетчатый тип нервной системы характерен для кишечно-полостных (гидра, медуза, полипы).
    Отражением этого этапа у высших позвоночных является парасимпатическая часть вегетативной нервной системы.
    III этап – Ганглиозный этап. На этом этапе нейроны образуют скопления (ганглии), которые располагаются не беспорядочно, а сегментарно, метамерно и соединяются нервными отростками. Раздражение уже локализуется в пределах одного сегмента Ганглиозный тип нервной системы характерен для высших червей, членистоногих. Отражением этого этапа у высших позвоночных является симпатическая часть вегетативной нервной системы.
    IV этап – ^ Трубкообразный этап сопровождается концентрацией нервных ганглиев в виде нервной трубки, внутри которой имеется полость. Такое строение нервной системы характерно для всех хордовых – от ланцетника до млекопитающих и птиц.
    V этап – Следующий этап связан с совершенствованием органов чувств, прогрессивным развитием передней части нервной трубки и формированием головного мозга (т.е. происходит энцефализация). Вначале формируется один мозговой пузырь, затем двумя перетяжками расширение перешнуровывается с образованием 3-х первичных мозговых пузырей. В последствии 1-й и 3-й еще раз разделяются на два отдела. Таким образом, формируется 5 мозговых пузырей, из которых в последствии развиваются 5 отделов головного мозга. Полости мозговых пузырей преобразуются в желудочки, внутри которых циркулирует цереброспинальная жидкость (ликвор). Ликвор обеспечивает нейроны питательными веществами и кислородом, выполняя роль посредника между кровью и нервной тканью. Таким образом, стимулом для развития головного мозга явилось дальнейшее совершенствование рецепторного аппарата животных (органов чувств). 
    Что же касается спинного мозга, то стимулом для его развития явилась двигательная активность животных. Это сначала привело к образованию туловищного мозга, который в процессе развития заменился спинным мозгом с отходящими от него спинномозговыми нервами ко всем сегментам тела.

    65

    Основной источник развития НС и его производные.

    Нервная пластинка представляет собой нейрольный зачаток источник развития нервной ткани в эмбриогенезе. У 16-дневного зародыша человека она имеет вид удлиненного дорсального утолщения эк­тодермы, лежащего над хордой. Детерминация материала нервной плас­тинки происходит в результате второй фазы гасгруляшш под индуцирующим влиянием хордо-мезодермального зачатка. При обособлении нейрального зачатка (нейруляции) выделяются три его компонента: нер-: вная трубка, нервный гребень и нейральные плакоды.
    Нервная трубка. В процессе выделения и обособления нерв-|ного зачатка (18-21-й дни развития эмбриона человека) нервная плас-I тинка прогибается, превращаясь сначала в нервный желобок (с припод-I пятыми краями - нервными валиками), который затем (22-й день) замы-•кается в нервную трубку и обособляется от эктодермы
    Производными нервной трубки являются нейроны и глия органов центральной нервной системы (ЦНС) - головного и спинного мозга, а также ряд структур периферической нервной системы (ПНС).
    Нервный гребень. При смыкании нервной трубки в области нервных валиков между ней и кожной эктодермой с обеих сторон выде­ляются скопления клеток, образующие нервный гребень,-называемый также ганглиозной пластинкой.Клетки нервного греб­ня утрачивают взаимные адгезивные связи и осуществляют миграцию в вентральном н латеральном направлениях в виде нескольких рассеи­вающихся потоков, которые дают многочисленные производные. Ход Последующей дифференпировки клеток нервного гребня, в соответствии
    с одними взглядами, запрограммирован еще до их миграции, согласно другим - определяется их микроокружением в течение миграции и в ее конечном участке, а также временем миграции.
    Производными нервного гребня являются нейроны и глия нолъных, вегетативных ганглиев и ганглиев некоторых черепномозго-вых нервов, яеммоциты, клетки мозгового вещества надпочечников, диффузной эндокринной системы, паутинной и мягкой мозговой оболо­чек, пигментные клетки (меланоциты). В краниальной части он слу­жит также источником эктомезенхимы, которая дает начало части ске­летных и волокнистых соединительных тканей области головы и шеи, аорты и сердца.
    Плакоды (от греч. р!ах - пластинка) - утолщенные участки экто­дермы в краниальной части зародыша по краям от нервной трубки, клетки которых обладают нейральной детерминацией, но не участвуют в образовании нервной трубки и нервного гребня,
    Производными плакод являются некоторые клетки органов чув­ств - слуха, равновесия, вкуса (рецепторные, поддерживающие и высти­лающие канальцы) и зрения (эпителий хрусталика).
    Замыкание нервной трубки начинается в шейном отделе в облас­ти появления первых сомитов, распространяясь в дальнейшем крани-ально и каудально. Открытые края нервной трубки (краниальный и кау-дальный нейропоры) замыкаются на 24-й и 2б-й дни внутриутробного развития, соответственно. Из расширяющегося краниального отдела нервной трубки, дающего начало трем первичным мозговым пузырям, формируется головной мозг, из остальной ее части образуется спинной мозг.
    Стенка нервной трубки на ранних стадиях развития состоит из одного слоя клеток призматической формы, которые интенсивно де­лятся и мигрируют от ее просвета, в результате чего на 3-4-й нед. в ней можно выделить три слоя (изнутри кнаружи):
    1) вентрикулярный (матричный, эпендимный) слой содержит камбиальные элементы и митотически делящиеся клетки. Часть кле­ток, образующих внутреннюю выстилку нервной трубки, дает начало эпендимной глии;
    2)  мантийный (плащевой) слой пополняется, в основном, за счет миграции клеток из эпендимного слоя, которые дифференцируются в нейробласты (дают начало нейронам) или спонгиобласты (глиобласты), дающие начало астроцитарной глии и олигодендроглии. Один из видов глиобластов преобразуется в радиальные глиальные клетки, которые протягиваются через всю стенку нервной трубки и служат направляющими элементами для миграции нейробластов. В дальнейшем радиальные глиальные клетки дифференцируются в астроциты.
    3)  краевая вуаль содержит отростки клеток, расположенных в двух более глубоких слоях.
    Нейробласты сначала не имеют отростков (аполярные нейроблас­ты), затем на противоположных концах их тел формируются отростки (клетки превращаются в биполярные нейробласты). Один из отростков подвергается обратному развитию (клетки преобразуются в униполярные нейробласты), на месте утраченного отростка в дальнейшем появляется несколько новых (дендритов), а нейробласты становятся мультиполяр-ными, постепенно дифференцируясь в зрелые нейроны, которые утрачивают способность к делению. Дифференцировка нейробласта в нейрон сопровождается накоплением в его цитоплазме цистерн грЭПС, увели­чением объема комплекса Гольджи, накоплением элементов питоске-лета.
    Рост аксона нейрона происходит со скоростью около 1 мм/сут.; он продвигается в тканях амебоидными движениями к иннервируемому им органу (органу-мишени), очевидно вследствие тропизма к выделяе­мым этим органом веществам. Рост ускоряется под действием фактора роста нервов (ФРН). На конце растущего аксона имеется расширение (конус роста), состоящее из центральной уплощенной части, от кото­рой отходят тонкие (0.1-0.2 мкм) длинные (до 50 мкм) отростки (микро-шишки, филоподии), содержащие многочисленные актиновые микрофи-ламенты и непрерывно меняющие свою форму и длину. Конус роста обеспечивает направленный рост аксона благодаря распознаванию кон^ тактных (адгезивных) и дистантных (гуморальных) химических сигна­лов. Рост аксона завершается его прикреплением к органу-мишени. За первым аксоном, вступающим в связь с органом-мишенью (аксоном-пи­онером), устремляются другие, формируя в дальнейшем тракты в ЦНС и нервы в ПНС.

    66

    Уровни организации нервной системы. (?)

    1) клеточный - нейроны, клетки глии; 2) тканевой - нейральная ткань (образована нейронами) и глиальная ткань; 3) уровень морфофункциональных единиц - цереброспинальный паттерный уровень (группа изогенных и изофункци-ональных клеток); модули (образуются из паттернов, расположенных на разных уровнях цереброспинальной нервной системы); распределительные системы; 4) органный - спинной мозг, головной мозг, вегетативные и чувствительные ганглии и т.д.; 5) системный.

    67

    Нейрон – структурная и функциональная характеристика, онтогенез.

    Нейрон - специализированная клетка нервной системы, отвечает за рецепцию, обработку стимулов, проведение импульса. Нервные импульсы притекают по дендритам и оттекают по аксонам (закон динамической поляризации Рамон-и-Кахаля). Дендриты - короткие, толстые, маловетвящиеся отростки; имеют на своей поверхности рецептивные площадки (шипики); по дендритам нервный импульс передается к перикариону. Аксоны - ветвящиеся отростки, масса их ветвления превосходит массу тела нейрона; передает нервный импульс от тела нейроцита к другим нервным клеткам или на рабочий орган. Каждый аксон начинается с аксонального холмика, где формируется окончательный нервный импульс на раздражение. В аксонах совершается аксо-плазматический ток: а) антеградный - быстрый, от нейрона к периферии (в область синапсов); б) ретроградный - медленный, от окончаний к: нейрону. В нейроне присутствуют те же органеллы и включения, которые встречаются в любой клетке, но есть и свои особенности. Цитоплазма делится на перикарион (часть цитоплазмы, окружающая ядро) и аксоплазму (цитоплазма отростков). Хорошо развита гранулярная ЭПС (базофильное вещество, тигроид); выявляется в теле нейрона и в дендритах. Нейрофибриллярный аппарат - нити толщиной 0,5-3 мкм, они идут в разных направлениях и представляют собой компоненты цитоскелета, склеившиеся в пучки при фиксации материала (т.е. фибриллы по своей сути являются артефактом). Пигментные включения - меланин, липофусцин.

    Структурная классификация


    На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

    Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

    Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

    Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

    Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

    Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

    Функциональная классификация


    По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

    Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

    Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

    Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

    Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

    Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

    Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона. Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза иэндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

    Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

    68

    Морфологическая и нейрохимическая классификация нейронов.

    Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

    • учитывают размеры и форму тела нейрона;

    • количество и характер ветвления отростков;

    • длину нейрона и наличие специализированных оболочек.

    По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет около 150 мкм.

    По количеству отростков выделяют следующие морфологические типы нейронов[1]:

    • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;

    • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;

    • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;

    • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

    Нейрохимическая классификация нейронов: 1) холинергические нейроны – передают импульс с помощью ацетилхолина; 2) моноаминергические или адренергические – передают импульс с помощью моноаминов; 3) пуринергические – с помощью пуринов; 4) пептидергические – с помощью пептидов; 5) ГАМКергические – медиатором является гаммааминомасляная кислота.

    69

    Характеристика аксонов и дендритов. Закон динамической поляризации нейронов.

    Аксон (греч. ἀξον — ось) — нейрит, осевой цилиндр, отросток нервной клетки, по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.

    Нейрон состоит из одного аксона, тела и нескольких дендритов, в зависимости от числа которых нервные клетки делятся на униполярные, биполярные, мультиполярные. Передача нервного импульса происходит от дендритов (или от тела клетки) к аксону, а затем сгенерированный потенциал действия от начального сегмента аксона передается назад к дендритам [1]. Если аксон в нервной ткани соединяется с телом следующей нервной клетки, такой контакт называется аксо-соматическим, с дендритами — аксо-дендритический, с другим аксоном — аксо-аксональный (редкий тип соединения, встречается вЦНС).

    В месте соединения аксона с телом нейрона у наиболее крупных пирамидных клеток 5-ого слоя коры находится аксонный холмик. Ранее предполагалось, что здесь происходит преобразование постсинаптического потенциала нейрона в нервные импульсы, но экспериментальные данные это не подтвердили. Регистрация электрических потенциалов выявила, что нервный импульс генерируется в самом аксоне, а именно в начальном сегменте на расстоянии 50 мкм от тела нейрона [2]. Для генерации потенциала действия в начальном сегменте аксона требуется повышенная концентрация натриевых каналов (до ста раз по сравнению с телом нейрона[3]).

    Питание и рост аксона зависят от тела нейрона: при перерезке аксона его периферическая часть отмирает, а центральная сохраняет жизнеспособность. При диаметре в несколько микронов длина аксона может достигать у крупных животных 1 метра и более (например, аксоны, идущие от нейроновспинного мозга в конечности). У многих животных (кальмароврыбкольчатых червейфоронидракообразных) встречаются гигантские аксоны толщиной в сотни мкм (у кальмаров — до 2—3 мм). Обычно такие аксоны отвечают за проведение сигналов к мышцам, обеспечивающим «реакцию бегства» (втягивание в норку, быстрое плавание и др.). При прочих равных условиях с увеличением диаметра аксона увеличивается скорость проведения по нему нервных импульсов.

    В протоплазме аксона — аксоплазме — имеются тончайшие волоконца — нейрофибриллы, а также микротрубочкимитохондрии и агранулярная (гладкая) эндоплазматическая сеть. В зависимости от того, покрыты ли аксоны миелиновой (мякотной) оболочкой или лишены её, они образуют мякотные или безмякотные нервные волокна.

    Миелиновая оболочка аксонов имеется только у позвоночных. Её образуют «накручивающиеся» на аксон специальные шванновские клетки (в центральной нервной системе - олигодендроциты), между которыми остаются свободные от миелиновой оболочки участки — перехваты Ранвье. Только на перехватах присутствуют потенциал-зависимые натриевые каналы и заново возникает потенциал действия. При этом нервный импульс распространяется по миелинизированным волокнам ступенчато, что в несколько раз повышает скорость его распространения. Скорость передачи сигнала по покрытым миелиновой оболочкой аксонам достигает 100 метров в секунду.

    Безмякотные аксоны меньше размерами чем аксоны покрытые миелиновой оболочкой, что компенсирует потери в скорости распространения сигнала по сравнению с мякотными аксонами.

    Концевые участки аксона — терминали — ветвятся и контактируют с другими нервными, мышечными или железистыми клетками. На конце аксона находится синаптическое окончание — концевой участок терминали, контактирующий с клеткой-мишенью. Вместе с постсинаптической мембраной клетки-мишени синаптическое окончание образует синапс. Через синапсы передаётся возбуждение.

    Дендрит (от греч. δένδρον — «дерево») — дихотомически ветвящийся отросток нервной клетки (нейрона), воспринимающий сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Проводит нервные импульсы к телу нейрона (соме).

    Дендриты могут образовывать синаптические контакты с аксонами (аксодендритические) и дендритами (дендро-дендритические).

    На многих дендритах имеются специальные образования — дендритные шипики. Синаптические контакты, образованные на них, называются аксошипиковыми. Шипики объединяются в кластеры шипиков.

    Отдельные дендриты образуют дендритную ветку, они же объединяются в дендритный регион. Совокупность всех дендритов называют дендритным деревом нейрона, оно образует воспринимающую поверхность нейрона.

    Принцип динамической поляризации -
    понятие в научный оборот ввёл испанский нейроанатом и гистолог Сантьяго Рамон-и-Кахаль (1852-1934).Понятие обозначает принцип, согласно которому нервные импульсы поступают в нервную клетку по дендритам (или непосредственно к телу клетки), но выходят из нейрона только по аксону.

    70

    Глия, ее разновидности и функции.

    Нейроглия - определенная среда, в которой существуют и функционируют нейроны. Клетки глии ЦНС делятся на макроглию (глиоциты) и микроглию. Макроглия развивается из глиобластов нервной трубки. К макроглии относятся эпендимоциты, астроциты и олигодендроциты.

    Макроглия

    Эпендимоциты выстилают желудочки головного мозга и центральный канал СМ. Эти клети цилиндрической формы и образует 3 типа эпителия. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Энендимная глия - выстилает канал спинного мозга, полости желудочков головного мозга; представляет собой однослойный эпителий; на апикальной поверхности есть реснички; от базальной поверхности отходят отростки, идущие через всю толщу спинного или головного мозга, соединяющиеся друг с другом на наружной поверхности и участвующие в образовании наружной глиальной пограничной мембраны. Функции: опорная, защитная, секреторная, разграничительная, трофическая.

    Астроциты – клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и разграничительную функции. Различают протоплазматические астроциты, локализующиеся в сером веществе ЦНС, и волокнистые астроциты, присутствующие в белом веществе. Астроцитарная глия- две разновидности: а) плазматическая - преобладает в сером веществе; плазматические астроциты имеют короткие толстые отростки; б) волокнистая - преобладает в белом веществе; волокнистые астроциты имеют тонкие длинные отростки. Функции: опорная, барьерно-защитная, разграничительная, транспортная, трофическая, метаболическая, пластическая.

    Олигодендроглия - олигодендроциты имеют небольшое число тонких отростков, тела клеток небольших размеров и треугольной формы; окружают сосуды, образуют оболочки вокруг тел нейронов и их отростков. Олигодендроциты делятся на несколько групп: 1) мантийные (сателлитные) - окружают тела нейронов; 2) леммоциты (шванновские клетки) - формируют оболочки вокруг отростков нейронов; 3) свободная олигодендроглия ЦНС; 4) олигодендроглия, участвующая в образовании нервных окончаний. Функции: барьерно-защитная, изоляция рецептивных зон и отростков нейроцитов, выработка миелина, участие в проведении нервного импульса; регуляция метаболизма нейроцитов.

    Микроглия - образуется из моноцитов крови; клетки небольших размеров, с тонкими ветвящимися отростками; в цитоплазме много лизосом; выполняют фагоцитарную функцию. Микроглия представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки (возможно, из премоноцитов красного костного мозга).

    Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной (ветвистой, или покоящейся) микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.

    В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты – филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы.

    71

    Нейронная теория – сущность и доказательства.

    Основные положения нейронной теории сформулированы в начале века; в ее разработке принимали участие С. Рамон-и-Кахаль, А. С. Догель, Б. И. Лаврентьев:

    1. Структурно-функциональной, медиаторной и метаболической единицей нервной ткани и нервной системы является нейрон.

    2. Нейрон - клетка, состоящая из перикариона, аксона, дендритов и их терминальных ветвлений.

    3. Функционирование нейронов возможно только при тесной интеграции их с различными видами нейроглии,

    4. Нейроны взаимодействуют друг с другом при помощи синапсов.

    5. Совокупность нейронов, связанных синапсами, формирует рефлекторные дуги (основной субстрат нервной системы).

    6. Возбуждение в синапсах и в рефлекторных дугах передается только в одном направлении.

    На современном этапе нейронная теория включает:

    1. Нейроны - самостоятельные морфологические единицы, а нервная система имеет расчлененную организацию.

    2. Нейроны собраны в структурно-функциональные единицы - паттерны, модули распределительной системы.

    3. Нервная система имеет многоуровневую и иерархическую организацию, в которой исполнительные нейроны регулируются командными нейронами.

    Доказательства:

    1. Все нейроны объединяются в рефлекторные дуги при помощи синапсов.

    2. Развитие нейрона начинается с аполярной стадии, синапсы формируются вторично.

    3. При повреждении нейрона его дегенерация происходит до ближайшего синапса.

    72

    Определение синапса, классификация синапсов, понятие об эфапсах и аутопсах.

    Синапс (от греч. sinapsis - соединение, связь) - специализированный контакт между нервными клетками или нервными клетками и другими возбудимыми образованиями, обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов осуществляется взаимодействие разнородных по функциям тканей организма, например, нервной и мышечной, нервной и секреторной. Синаптическая область характеризуется специфическими химическими свойствами. Понятие «синапс» ввел в 1897 г. английский физиолог Шеррингтон, обозначив так соединение аксона одной нервной клетки с телом другой.

    Все синапсы имеют принципиально общие черты строения. Пресинапти-ческое окончание аксона нейрона при подходе к иннервируемой клетке теряет миелиновую оболочку, что несколько снижает скорость распространения волны возбуждения. Небольшое утолщение на конце волокна, называемое синаптической бляшкой, содержит синаптические пузырьки с медиатором -веществом, способствующим передаче возбуждения в синапсе.

    Синаптическая щель - пространство между пресинаптическим окончанием и участком мембраны эффекторной клетки является непосредственным продолжением межклеточного пространства; ее содержимое - гель, в состав которого входят гликозаминогликаны. В пресинаптической области обнаружены митохондрии, гранулы гликогена, спиралевидные нити - филаменты.

    Постсинаптическая мембрана - участок эффекторной клетки, контактирующий с пресинаптической мембраной через синаптическую щель. От постсинаптической мембраны по направлению к ядру клетки прослеживаются нежные микротрубочки, образованные молекулами специфических белков. Полагают, что им принадлежит определенная роль в распространении и обработке информации внутри клетки.

    Уникальной структурой постсинаптической мембраны являются клеточные рецепторы - сложные белковые молекулы, способные к конфор-мации, т.е. изменяющие пространственную ориентацию при взаимодействии с соответствующими им химическими веществами - лигандами. Участки такого взаимодействия называются центрами связывания.

    В результате конформации в центрах связывания рецептора с медиатором изменяется проницаемость мембранных каналов эффекторной клетки. Это в свою очередь в каждом конкретном случае способствует ее возбуждению или торможению. Совокупность перечисленных структур называют концевой пластинкой.
    1   ...   5   6   7   8   9   10   11   12   13


    написать администратору сайта