Главная страница
Навигация по странице:

  • 1.2. Основные понятия и определения для электрической цепи

  • 1.3. Основные законы цепей постоянного тока

  • Закон Ома для участка цепи

  • Закон Ома для всей цепи

  • Первый закон Кирхгофа

  • Второй закон Кирхгофа

  • 1.4. Способы соединения сопротивлений и расчет эквивалентногосопротивления электрической цепи

  • Электрическая цепь с последовательным соединением элементов

  • Лекция по электротехнике постоянный ток. Лекция ЭЛЕКТРОТЕХНИКА Постоянный. Электрические цепи постоянного тока и методы их расчета Электрическая цепь и ее элементы


    Скачать 292.71 Kb.
    НазваниеЭлектрические цепи постоянного тока и методы их расчета Электрическая цепь и ее элементы
    АнкорЛекция по электротехнике постоянный ток
    Дата17.05.2022
    Размер292.71 Kb.
    Формат файлаdocx
    Имя файлаЛекция ЭЛЕКТРОТЕХНИКА Постоянный.docx
    ТипЗадача
    #534568
    страница1 из 4
      1   2   3   4

    Электрические цепи постоянного тока и методы их расчета

    Электрическая цепь и ее элементы

    В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.

    Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.

    Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.



    Рис. 1.1

    Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:

    1) Источники электрической энергии (питания).

    Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).

    2) Потребители электрической энергии.

    Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.

    3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.

    Все элементы цепи охвачены одним электромагнитным процессом.

    В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r0, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.

    1.2. Основные понятия и определения для электрической цепи

    Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r0, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1R2,…,Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.

    При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r0, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R,R1 и R2.



    Рис. 1.2

    Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения Uисточника задается противоположным направлению ЭДС.

    При расчете в схеме электрической цепи выделяют несколько основных элементов.

    Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r0,E,R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.

    Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 1.2) находятся в параллельных ветвях.

    Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.

    Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:

    а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;

    б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;

    в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.

    Все электрические цепи делятся на линейные и нелинейные.

    Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.

    Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

    Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.

    1.3. Основные законы цепей постоянного тока

    Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.

    Закон Ома для участка цепи

    Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома


    Рис. 1.3

    (1.1)

     или UR=RI.

    В этом случае UR=RI – называют напряжением или падением напряжения на резисторе R, а   – током в резисторе R.

    При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:

    .

    В этом случае закон Ома для участка цепи запишется в виде:

    I=Ug.

    Закон Ома для всей цепи

    Этот закон определяет зависимость между ЭДС E источника питания с внутренним сопротивлением r0 (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением RЭ=r0+R всей цепи:

    (1.2)

    .

    Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.

    Первый закон Кирхгофа

    В любом узле электрической цепи алгебраическая сумма токов равна нулю

    (1.3)

    ,

    где m – число ветвей подключенных к узлу.

    При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) II1I2=0.

    Второй закон Кирхгофа

    В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

    (1.4)

    ,

    где n – число источников ЭДС в контуре;
    m – число элементов с сопротивлением Rk в контуре;
    Uk=RkIk – напряжение или падение напряжения на k-м элементе контура.

    Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:

    E=UR+U1.

    Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю

    (1.5)

    .

    При записи уравнений по второму закону Кирхгофа необходимо:

    1) задать условные положительные направления ЭДС, токов и напряжений;

    2) выбрать направление обхода контура, для которого записывается уравнение;

    3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

    Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 1.2):

    контур I: E=RI+R1I1+r0I,

    контур II: R1I1+R2I2=0,

    контур III: E=RI+R2I2+r0I.

    В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия

    (1.6)

    W=I2Rt.

    Скорость преобразования электрической энергии в другие виды представляет электрическую мощность

    (1.7)

    .

    Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.

    (1.8)

    .

    Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение EI подставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение EI подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде:

    EI=I2(r0+R)+I12R1+I22R2.

    При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А), напряжение – в вольтах (В), сопротивление – в омах (Ом), мощность – в ваттах (Вт), электрическая энергия – ватт-час (Вт-час) и проводимость – в сименсах (См)

    Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1 мA = 10–3 А), килоампер (1 кA = 103 А), милливольт (1 мВ = 10–3 В), киловольт (1 кВ = 103 В), килоом (1 кОм = 103 Ом), мегаом (1 МОм = 106 Ом), киловатт (1 кВт = 103 Вт), киловатт-час (1 кВт-час = 103 ватт-час).

    1.4. Способы соединения сопротивлений и расчет эквивалентного
    сопротивления электрической цепи


    Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

    Электрическая цепь с последовательным соединением элементов


    Рис. 1.4


    Рис. 1.5

    Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).

    На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

    U=U1+U2+U3 или IRэкв=IR1+IR2+IR3,

    откуда следует

    (1.5)

    Rэкв=R1+R2+R3.

    Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв(рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома

    ,

    и по вышеприведенным формулам рассчитывают падение напряжений U1,U2,U3 на соответствующих участках электрической цепи (рис. 1.4).

    Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.
      1   2   3   4


    написать администратору сайта