Главная страница
Навигация по странице:

  • Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

  • Лекция по электротехнике постоянный ток. Лекция ЭЛЕКТРОТЕХНИКА Постоянный. Электрические цепи постоянного тока и методы их расчета Электрическая цепь и ее элементы


    Скачать 292.71 Kb.
    НазваниеЭлектрические цепи постоянного тока и методы их расчета Электрическая цепь и ее элементы
    АнкорЛекция по электротехнике постоянный ток
    Дата17.05.2022
    Размер292.71 Kb.
    Формат файлаdocx
    Имя файлаЛекция ЭЛЕКТРОТЕХНИКА Постоянный.docx
    ТипЗадача
    #534568
    страница2 из 4
    1   2   3   4

    Электрическая цепь с параллельным соединением элементов

    Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).



    Рис. 1.6

    В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

    I=I1+I2+I3, т.е.  ,

    откуда следует, что

    (1.6)

    .

    В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением

    (1.7)

    .

    Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

    gэкв=g1+g2+g3.

    По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

    Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)

    U=IRэкв=I1R1=I2R2=I3R3.

    Отсюда следует, что

    ,

    т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

    По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.

    Электрическая цепь со смешанным соединением элементов

    Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.



    Рис. 1.7

    Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:

    .

    В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):



    Рис. 1.8

    На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:

    .

    Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):



    Рис. 1.9

    На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно

    .

    Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.

    Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:

    .


    Рис. 1.10


    Рис. 1.11

    В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.

    Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

    В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12,R13,R24,R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.


    Рис. 1.12


    Рис. 1.13

    В мостовой схеме сопротивления R13,R12,R23 и R24,R34,R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24R34R23 звездой R2R3R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

    (1.8)

    .

    Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

    (1.9)

    .

    После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

    .

    1.5. Источник ЭДС и источник тока в электрических цепях

    При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением величины внутреннего сопротивления r0 заменяют расчетным эквивалентным источником ЭДС или источником тока.


    Рис. 1.14

    Источник ЭДС (рис. 1.14) имеет внутреннее сопротивление r0, равное внутреннему сопротивлению реального источника. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС.

    Для данной цепи запишем соотношение по второму закону Кирхгофа

    (1.10)

    E=U+Ir0 или E=UIr0.

    Эта зависимость напряжения U на зажимах реального источника от тока I определяется его вольт-амперной или внешней характеристикой (рис. 1.15). Уменьшение напряжения источника U при увеличении тока нагрузки I объясняется падением напряжения   на его внутреннем сопротивлении r0.



    Рис. 1.15

    Рис. 1.16

    У идеального источника ЭДС внутреннее сопротивление r0<<Rн (приближенно r00). В этом случае его вольт-амперная характеристика представляет собой прямую линию (рис. 1.16), следовательно, напряжение U на его зажимах постоянно (U=E) и не зависит от величины сопротивления нагрузки Rн.


    Рис. 1.17

    Источник тока, заменяющий реальный источник электрической энергии, характеризуется неизменным по величине током Iк, равным току короткого замыкания источника ЭДС  , и внутренним сопротивление r0, включенным параллельно (рис. 1.17).

    Стрелка в кружке указывает положительное направление тока источника. Для данной цепи запишем соотношение по первому закону Кирхгофа

    Iк=I0+I .

    В этом случае вольт-амперная (внешняя) характеристика I(U) источника тока определится соотношением

    (1.11)

    I=IкI0=IкU/r0

    и представлена на рис. 1.18.



    Рис. 1.18

    Рис. 1.19

    Уменьшение тока нагрузки I при увеличении напряжения U на зажимах ab источника тока, объясняется увеличением тока I0, замыкающегося в цепи источника тока.

    В идеальном источнике тока r0>>Rн. В этом случае можно считать, что при изменении сопротивления нагрузки Rн потребителя I00, а IIк. Тогда из выражения (1.11) следует, что вольт-амперная характеристика I(U) идеального источника тока представляет прямую линию, проведенную параллельно оси абсцисс на уровне I=Iк=E/r0 (рис. 1.19).

    При сравнении внешних характеристик источника ЭДС (рис. 1.15) и источника тока (рис. 1.18) следует, что они одинаково реагируют на изменение величины сопротивления нагрузки. Покажем, что в обоих случаях ток I в нагрузке определяется одинаковым соотношением.

    Ток в нагрузке Rн для схем источника ЭДС (рис. 1.14) и источника тока (рис. 1.17) одинаков и равен  .

    Для схемы (рис. 1.14) это следует из закона Ома, т.к. при последователь-ном соединении сопротивления r0 и Rн складываются. В схеме (рис. 1.17) ток  распределяется обратно пропорционально сопротивлениям r0 и Rн двух параллельных ветвей. Ток в нагрузке Rн

    ,

    т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 1.17) эквивалентна схеме источника ЭДС (рис. 1.14) в отношении энергии, выделяющейся в сопротивлении нагрузки Rн, но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания.

    Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r0 и величиной электродвижущей силы E.

    В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное.

    Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 1.20).



    Рис. 1.20

    Для этой цепи на основании второго закона Кирхгофа можно записать

    E1+E2+E3=I(r01+r02+r03+Rн),

    откуда

    .

    Таким образом, электрическая цепь на рис. 1.20 может быть заменена цепью с эквивалентным источником питания (рис. 1.21), имеющим ЭДС Eэ и внутреннее сопротивление rэ.


    Рис. 1.21


    Рис. 1.22

    При параллельном соединении источников (рис. 1.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 1.22 можно записать следующие уравнения:

    I=I1+I2+I3P=P1+P2+P3=UI1+UI2+UI3=UI.

    Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.
    1   2   3   4


    написать администратору сайта