Главная страница
Навигация по странице:

  • Метод антропометрических стандартов

  • Метод корреляции

  • Метод антропометрических индексов

  • Рост (см)- 100= Масса (кг)

  • КП=(l

  • Жизненный показатель=ЖЁЛ(мл)/масса тела (кг)

  • физра - мирошников. Физическое развитие человека. Методы оценки


    Скачать 53.84 Kb.
    НазваниеФизическое развитие человека. Методы оценки
    Дата25.05.2023
    Размер53.84 Kb.
    Формат файлаdocx
    Имя файлафизра - мирошников.docx
    ТипРеферат
    #1158728


    Министерство образования и науки РФ

    Федеральное государственное бюджетное образовательное учреждение

    высшего образования

    "САНКТ-ПЕТЕРБУРГСКИ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени С.М.Кирова"

    Контрольная №1 на тему «Физическое развитие человека. Методы оценки»

    Выполнил:

    Мирошников

    № зачетной книжки 122377

    зТМб-ЛИД-22-1

    Санкт-Петербург

    2023 год
    Содержание:
    Введение 3

    1.Общее представление о физическом развитии 4

    Заключение 18

    Список использованных источников 19

    Введение
    Жизнь человека - это непрерывный процесс развития, в котором последовательно проходят следующие этапы: созревание, зрелый возраст, старение. Рост и развитие - это две взаимосвязанные и взаимообусловленные стороны одного и того же процесса. Рост - это количественные изменения, связанные с увеличением размеров клеток, массы как отдельных органов и тканей, так и всего организма. Развитие - качественные изменения, дифференцировка тканей и органов и их функциональное совершенствование. Рост и развитие протекают неравномерно.

    Физическое развитие организма подчиняется биологическим законам и отражает общие закономерности роста и развития. Подчиняясь биологическим закономерностям, физическое развитие зависит от большого количества факторов и отражает не только наследственную предрасположенность, но и влияние на организм всех средовых факторов.

    Физическое развитие остается одним из важнейших показателей здоровья и возрастных норм совершенствования, поэтому практическое умение правильно оценить его, будет способствовать воспитанию здорового поколения.

    Особенности физического развития программируются на генетическом уровне, поэтому дети похожи на родителей. Наследственная программа передается из поколения в поколение, и у одних людей не изменяется, а у других совершенствуется.

    Цель работы: Методы оценки физического развития человека

    Для достижения цели были поставлены следующие задачи:

    Изучить факторы, влияющие на антропометрические показатели;

    • Рассмотреть условия проведения антропометрических исследований;

    • Изучить методы антропометрических измерений;

    • Рассмотреть методы оценки физического развития.


    1.Общее представление о физическом развитии

    Физическое развитие - это процесс становления, формирования и последующего изменения на протяжении жизни индивидуума морфофункциональных свойств его организма и основанных на них физических качеств и способностей.

    Физическое развитие характеризуется изменениями трех групп показателей: физический развитие оценка уровень

    · Показатели телосложения (длина тела, масса тела, осанка, объемы и формы отдельных частей тела, величина жироотложения и др.), которые характеризуют прежде всего биологические формы, или морфологию, человека.

    · Показатели (критерии) здоровья, отражающие морфологические и функциональные изменения физиологических систем организма человека. Решающее значение на здоровье человека оказывает функционирование сердечно-сосудистой, дыхательной и центральной нервной систем, органов пищеварения и выделения, механизмов терморегуляции и др.

    · Показатели развития физических качеств (силы, скоростных способностей, выносливости и др.).

    Примерно до 25-летнего возраста (период становления и роста) большинство морфологических показателей увеличивается, и совершенствуются функции организма. Затем до 45--50 лет физическое развитие стабилизировано на определенном уровне. В дальнейшем, по мере старения, функциональная деятельность организма постепенно ослабевает и ухудшается, могут уменьшаться длина тела, мышечная масса и т.п.

    Характер физического развития как процесс изменения показателей в течение жизни зависит от многих причин и определяется целым рядом закономерностей. Успешно управлять физическим развитием возможно только в том случае, если известны эти закономерности, и они учитываются при построении процесса физического воспитания.

    Физическое развитие в известной мере определяется законами наследственности, которые должны учитываться как факторы, благоприятствующие или, наоборот, препятствующие физическому совершенствованию человека. Наследственность, в частности, должна приниматься во внимание при прогнозировании возможностей и успехов человека в спорте. Процесс физического развития подчиняется также закону возрастной ступенчатости. Вмешиваться в процесс физического развития человека с целью управления им можно только на основе учета особенностей и возможностей человеческого организма в различные возрастные периоды: в период становления и роста, в период наивысшего развития его форм и функций, в период старения.

    Процесс физического развития подчиняется закону единства организма и среды и, следовательно, существенным образом зависит от условий жизни человека. К условиям жизни, прежде всего, относятся социальные условия. Условия быта, труда, воспитания и материального обеспечения в значительной мере влияют на физическое состояние человека и определяют развитие и изменение форм и функций организма. Известное влияние на физическое развитие оказывает и географическая среда.

    Большое значение для управления физическим развитием в процессе физического воспитания имеют биологический закон упражняемости и закон единства форм и функций организма в его деятельности. Эти законы являются отправными при выборе средств и методов физического воспитания в каждом конкретном случае. Выбирая физические упражнения и определяя величину их нагрузок, согласно закону упражняемости можно рассчитывать на необходимые адаптационные перестройки в организме занимающихся. При этом учитывается, что организм функционирует как единое целое. Поэтому, подбирая упражнения и нагрузки, преимущественно избирательного воздействия, необходимо отчетливо представлять себе все стороны их влияния на организм.

    Для оценки уровня физического развития можно выделить следующие методы:

    · антропометрических стандартов;

    · корреляции;

    · антропометрических индексов.

    Метод антропометрических стандартов

    Антропометрические стандарты физического развития определяются путем вычисления средних величин антропометрических данных, полученных при обследовании различных групп людей, одинаковых по полу, возрасту, социальному составу, профессии др. Средние величины (стандарты) антропометрических признаков определяются методом математической статистики. Для каждого признака вычисляют среднюю арифметическую величину (М-mediana) и среднее квадратическое отклонение (s-сигма), которое определяет границы однородной группы (нормы) для каждого признака и характеризует величину его колебаний (вариаций).

    При наличии показателей ниже средних и низких по отдельным признакам в занятия физическими упражнениями и спортом рекомендуется включать специальные упражнения, способствующие ликвидации имеющихся недостатков в физическом развитии.

    Наряду с антропометрическим профилем в практике врачебного контроля применяются номограммы - графики геометрических величин, используемые при расчетах физического развития и физической работоспособности. Для оценки массы с учетом роста в номограмме необходимо найти фактическую массу и рост обследуемого, например 70 кг и 170 см, восстановить из найденных точек перпендикуляры до их пересечения. Из точки пересечения провести мысленно вправо вверх линию, параллельную линии М. Эта "мысленная" линия на правой стороне номограммы выходит на середину между точками М и +1. Следовательно, оценка массы по росту будет +0,5, т.е. в пределах средних значений. Недостаток метода стандартов заключается в том, что в качестве показателя изменчивости признаков физического развития используется среднее квадратическое отклонение. Вместе с тем известно, что этот статистический показатель может служить мерилом изменчивости только для свободных, т.е. не связанных друг с другом признаков.

    Метод корреляции

    Антропометрические признаки физического развития, особенно такие, как длина, масса тела, окружность грудной клетки, взаимосвязаны. Эта взаимосвязь (корреляция) может быть выявлена при обработке антропометрических данных, полученных в результате обследования больших однородных групп. Степень зависимости между признаками выражается величиной коэффициента корреляции в пределах ±1. Коэффициент +1 означает прямую зависимость между исследуемыми признаками (с увеличением одного признака увеличивается другой). Коэффициент -1 означает обратную связь (при увеличении одного признака другой уменьшается).

    Величина, на которую увеличивается (или уменьшается), второй признак, называется коэффициентом регрессии. Вычисление этих коэффициентов позволяет представить корреляцию между антропометрическими признаками в виде таблиц или графиков (номограмм), используемых для оценки показателей физического развития.

    Метод корреляции дает возможность уточнить оценку антропометрических данных. Для расчетов методом корреляции пользуются соответствующими таблицами и формулами:

    Dx=Rxy(y-My)Mx , где

    Dx - вес, который должен быть у обследуемого при его возрасте и росте;

    Rxy - коэффициент регрессии между ростом и весом, который находится в таблице, с учетом возраста и оцениваемых показателей;

    у - истинный рост испытуемого;

    My - средний рост для данной возрастной группы;

    Mx - средний вес для данной возрастной группы;

    nб=X-Dx/б, где

     - число, показывающее, на сколько, истинная величина показателя отличается от должной;

    X - истинный вес обследуемого;

    б - среднее квадратичное отклонение для оцениваемого показателя в данной возрастной группе.

    Оценка величин отклонений измеренных показателей от должных производится так же, как и по методу стандартов, но дает более точное представление об уровне развития исследуемого признака.

    Метод антропометрических индексов

    Хотя этот метод не дает возможности полностью характеризовать те или иные данные, он позволяет периодически делать ориентировочные оценки изменений пропорциональности физического развития.

    Рассмотрим способы вычисления наиболее часто применяемых антропометрических индексов:

    1. Весо-ростовой показатель.

    Вычисляется делением массы тела на его длину. В норме частное от деления должно равняться:

    · 350-400 г/см для мужчин;

    · 325-375 г/см для женщин.

    Данные весо-ростового показателя говорят об излишке массы или наоборот.

    2. Росто-весовой показатель.

    Вычисляется по формуле:

    Рост (см)- 100= Масса (кг)

    Результат показывает нормальную для человека данного роста массу тела. Это наиболее простой и общедоступный показатель.

    Однако вычитание цифры 100 применимо лишь для оценки росто-весового показателя взрослых людей низкого роста (155-165 см). При росте 165-175 см надо вычитать не 100, а 105 единиц, при росте 175-185 см - 110 единиц.

    3. Коэффициент пропорциональности.

    Его можно найти, зная длину тела в двух положениях. Коэффициент пропорциональности (КП) измеряется в процентах.

    КП=(l1*l2/l2)*100 , где

    l1 - длина тела, в положении стоя; l2 - длина тела, в положении сидя.

    В норме КП = 87-92%. Коэффициент имеет определенное значение при занятиях спортом. Лица с низким КП имеют при прочих равных условиях более низкое расположение центра тяжести, что дает им преимущество при выполнении упражнений, требующих высокой устойчивости тела в пространстве (горнолыжный спорт, прыжки с трамплина, борьба и др.). Лица, имеющие высокий КП (более 92%), имеют преимущество перед лицами с низким КП в прыжках, беге. У женщин коэффициент пропорциональности ниже, чем у мужчин.

    4. Жизненный показатель.

    Жизненный показатель=ЖЁЛ(мл)/масса тела (кг), где

    ЖЕЛ - жизненная емкость легких.

    Частное от деления ниже 65-70 см3/кг у мужчин и 55-60 см3/кг у женщин свидетельствует о недостаточной жизненной емкости легких или об избыточном весе.

    5. Силовой показатель.

    Между массой тела и мышечной силой есть известное соотношение. Обычно чем больше мышечная масса, тем больше сила. Силовой показатель (СП) определяется по формуле и выражается в процентах:Для сильнейшей кисти этот показатель равен 65-80% для мужчин и 48-50% для женщин.

    6. Индекс пропорциональности развития грудной клетки.

    Находится из разности между величиной окружности грудной клетки (в паузе) и половиной длины тела. Нормальная разница должна составлять 5 - 8 см для мужчин и 3 - 4 см для женщин. Если разница равна или превышает названные цифры, то это указывает на хорошее развитие грудной клетки. Если она ниже, указанных величин или имеет отрицательное значение, то это свидетельствует об узкогрудии.

    7. Показатель крепости телосложения.

    Выражает разницу между длиной тела и суммой массы и окружности грудной клетки на выдохе.

    Например, при росте 181 см, массе 80 кг, окружности грудной клетки 90 см этот показатель будет равен 181 - (80+90) = 11.

    У взрослых разность меньше 10 можно оценивать как крепкое телосложение, от 10 до 20 - как хорошее, от 21 до 25 - как среднее, от 26 - до 35 - как слабое и более 36 - как очень слабое телосложение.

    Следует, однако, учитывать, что показатель крепости телосложения, который зависит от развития грудной клетки и массы тела, может ввести в заблуждение, если большие значения массы тела и окружности грудной клетки отражают не развитие мускулатуры, а являются результатом ожирения.

    Физическое развитие, и как следствие, выносливость студентов приобретает наибольшую актуальность в современном темпе жизни. В связи с этим возникает необходимость развития физических качеств и в большей мере силовых возможностей.

    Развитие физических качеств в разной мере зависит от врожденных особенностей. Вместе с тем в индивидуальном развитии ведущим механизмом является условно-рефлекторны . Этот механизм обеспечивает качественные особенности двигательной деятельности конкретного человека, специфику их проявления и взаимоотношений. При тренировке скелетных мышц (и соответствующих отделов центральной нервной системы) одной стороны тела условно-рефлекторным путем достигаются идентичные реакции отделов нервной системы и мышц другой половины тела, обеспечивающие развитие данного качества на не упражнявшихся симметричных мышцах.

    Для проявления физических качеств характерна их меньшая осознаваемость по сравнению с двигательными навыками, большая значимость для них биохимических, морфологических и вегетативных изменений в организме.

    Формы проявления мышечной силы.

    Сила мышцы - это способность за счет мышечных сокращений преодолевать внешнее сопротивление. При ее оценке различают абсолютную и относительную мышечную силу.

    Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение при одновременном выполнении следующих трех условий:

    1) активации всех двигательных единиц (мышечных волокон) данной мышцы;
    2) режиме полного тетануса у всех ее двигательных единиц;

    3) сокращении мышцы при длине покоя.

    В этом случае изометрическое напряжение мышцы соответствует ее максимальной статической силе.

    Максимальная сила (МС), развиваемая мышцей, зависит от числа мышечных волокон, составляющих данную мышцу, и от их толщины. Число и толщина волокон определяют толщину мышцы в целом, или, иначе, площадь поперечного сечения мышцы (анатомический поперечник). Относительная сила это отношение мышечной силы к ее анатомическому поперечнику (толщине мышцы в целом, которая зависит от числа и толщины отдельных мышечных волокон). Она измеряется в тех же единицах. В спортивной практике для ее оценки используют более простой показатель: отношение мышечной силы к весу тела спортсмена, т. е. в расчете на 1 кг.

    Анатомический поперечник определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно к ее длине. Поперечный разрез мышцы, проведенный перпендикулярно к ходу ее волокон, позволяет получить физиологический поперечник мышцы. Для мышц с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. Абсолютная сила- это отношение мышечной силы к физиологическому поперечнику мышцы (площади поперечного разреза всех мышечных волокон). Она измеряется в Ньютонах или килограммах силы на 1 см2 . В спортивной практике измеряют динамометром силу мышцы без учета ее поперечника.
    Измерение мышечной силы у человека осуществляется при его произвольном усилии, стремлении максимально сократить необходимые мышцы. Поэтому когда говорят о мышечной силе у человека, речь идет о максимальной произвольной силе (МПС). Она зависит от двух групп факторов: мышечных (периферических) и координационных (центрально-нервных)
    К мышечным (периферическим) факторам, определяющим МПС, относятся:

    а) механические условия действия мышечной тяги — плечо рычага действия мышечной силы и угол приложения этой силы к костным рычагам;

    б) длина мышц, так как напряжение мышцы зависит от ее длинны;

    в) поперечник (толщина) активируемых мышц, так как при прочих равных условиях проявляемая мышечная сила тем больше, чем больше суммарный поперечник произвольно сокращающихся мышц;

    г) композиция мышц, т. е. соотношение быстрых и медленных мышечных волокон в сокращающихся мышцах.

    К координационным (центрально-нервным) факторам относится совокупность центрально-нервных координационных механизмов управления мышечным аппаратом — механизмы внутримышечной координации и механизмы межмышечной координации.

    Механизмы внутримышечной координации определяют число и частоту импульсации мотонейронов данной мышцы и связь их импульсации во времени. С помощью этих механизмов центральная нервная система регулирует МПС данной мышцы, т. е. определяет, насколько сила произвольного сокращения данной мышцы близка к ее МС. Показатель МПС любой мышечной группы даже одного сустава зависит от силы сокращения многих мышц. Совершенство межмышечной координации проявляется в адекватном выборе «нужных» мышц-синергистов, в ограничении «ненужной» активности мышц-антагонистов данного и других суставов и в усилении активности мышц-антагонистов, обеспечивающих фиксацию смежных суставов и т. п.

    Таким образом, управление мышцами, когда требуется проявить их МПС, является сложной задачей для центральной нервной системы. Отсюда понятно, почему в обычных условиях МПС мышц меньше, чем их МС. Разница между МС мышц и их МПС называется силовым дефицитом.

    Силовой дефицит данной мышечной группы тем меньше, чем совершеннее центральное управление мышечным аппаратом. Величина силового дефицита зависит от трех факторов: 1) психологического, эмоционального, состояния (установки) испытуемого; 2) необходимого числа одновременно активируемых мышечных групп и 3) степени совершенства произвольного управления ими.
    Связь произвольной силы и выносливости мышц.
    Между показателями произвольной силы и выносливости мышц (локальной выносливости) существует сложная связь. МПС и статическая выносливость одной и той же мышечной группы связаны прямой зависимостью: чем больше МПС данной мышечной группы, тем длительнее можно удержать выбранное усилие (больше абсолютная локальная выносливость). Иная связь между произвольной силой и выносливостью обнаруживается в экспериментах, в которых разные испытуемые развивают одинаковые относительные мышечные усилия, например 60% от их МПС (при этом, чем сильнее испытуемый, тем большее по абсолютной величине мышечное усилие он должен поддерживать). В этих случаях среднее предельное время работы (относительная локальная выносливость) чаще всего одинаково у людей с разной МПС.

    Показатели МПС и динамической выносливости не обнаруживают прямой связи у не спортсменов и спортсменов различных, специализаций. Например, как среди мужчин, так и среди женщин наиболее сильными мышцами ног обладают дискоболы, но у них самые низкие показатели динамической выносливости. Бегуны на средние и длинные дистанции по силе мышц ног не отличаются от не спортсменов, но у первых чрезвычайно большая динамическая локальная выносливость. В то же время у них не выявлено повышенной динамической выносливости мышц рук. Все это свидетельствует о высокой специфичности тренировочных эффектов: больше всего повышаются те функциональные свойства и у тех мышц, которые являются основными в тренировке спортсмена. Тренировка, направленная преимущественно на развитие мышечной силы, совершенствует механизмы, способствующие улучшению этого качества, значительно меньше влияя на мышечную выносливость, и наоборот.

    Рабочая гипертрофия мышц.

    Поскольку сила мышцы зависит от ее поперечника, увеличение его сопровождается ростом силы данной мышцы. Увеличение мышечного поперечника в результате физической тренировки называется рабочей гипертрофией мышцы (от греч. «трофос»—питание). Мышечные волокна, являющиеся высокоспециализирова ными дифференцированными клетками, по-видимому, не способны к клеточному делению с образованием новых волокон. Во всяком случае, если деление мышечных клеток и имеет место, то только в особых случаях и в очень небольшом количестве. Рабочая гипертрофия мышцы происходит почти или исключительно за счет утолщения (увеличения объема) существующих мышечных волокон. При значительном утолщении мышечных волокон, возможно, их продольное механическое расщепление с образованием «дочерних» волокон с общим сухожилием. В процессе силовой тренировки число продольно расщепленных волокон увеличивается.

    Можно выделить два крайних типа рабочей гипертрофии мышечных волокон — саркоплазматический и миофибриллярный. Саркоплазматическая рабочая гипертрофия — это утолщение мышечных волокон за счет преимущественного увеличения объема саркоплазмы, т. е. не сократительной их части. Гипертрофия этого типа происходит за счет повышения содержания не сократительных (в частности, митохондриальных) белков и метаболических резервов мышечных волокон: гликогена, без азотистых веществ, креатин фосфата, миоглобина и др. Значительное увеличение числа капилляров в результате тренировки также может вызывать некоторое утолщение мышцы.

    Наиболее предрасположены к саркоплазматической гипертрофии, по-видимому, медленные и быстрые окислительные волокна. Рабочая гипертрофия этого типа мало влияет на рост силы мышц, но зато значительно повышает способность к продолжительной работе, т. е. увеличивает их выносливость.
    Миофибриллярная рабочая гипертрофия связана с увеличением числа и объема, миофибрилл, т. е. собственно-сократител ного аппарата мышечных волокон. При этом возрастает плотность укладки миофибрилл в мышечном волокне. Такая рабочая гипертрофия мышечных волокон ведет к значительному росту МС мышцы. Существенно увеличивается и абсолютная сила мышцы, а при рабочей гипертрофии первого типа она или совсем не изменяется, или даже несколько уменьшается. По-видимому, наиболее предрасположены к миофибриллярной гипертрофии быстрые мышечные волокна.
    В реальных ситуациях гипертрофия мышечных волокон представляет собой комбинацию двух названных типов, с преобладанием одного из них. Преимущественное развитие того или иного типа рабочей гипертрофии определяется характером мышечной тренировки. Длительные динамические упражнения, развивающие выносливость, с относительно небольшой силовой нагрузкой на мышцы вызывают главным образом рабочую гипертрофию первого типа. Упражнения с большими мышечными напряжениями (более 70% от МПС тренируемых групп мышц), наоборот, способствуют развитию рабочей гипертрофии преимущественно второго типа.

    В основе рабочей гипертрофии лежит интенсивный синтез и уменьшенный распад мышечных белков. Соответственно концентрация ДНК и РНК в гипертрофированной мышце больше, чем в нормальной. Креатин, содержание которого увеличивается в сокращающейся мышце, может стимулировать усиленный синтез актина и миозина и таким образом способствовать развитию рабочей гипертрофии мышечных волокон.

    Очень важную роль в регуляции объема мышечной массы, в частности в развитии гипертрофии мышц, играют андрогены (мужские половые гормоны). У мужчин они вырабатываются половыми железами (семенниками) и в коре надпочечников, а у женщин — только в коре надпочечников. Соответственно у мужчин количество андрогенов в организме больше, чем у женщин. Роль андрогенов в увеличении мышечной массы проявляется в следующем.

    Даже после коррекции показателей силы с размерами тела силовые показатели у взрослых женщин ниже, чем у мужчин. Вместе с тем если у женщин в результате некоторых заболеваний усиливается секреция андрогенов надпочечниками, то интенсивно увеличивается мышечная масса, появляется хорошо развитый мышечный рельеф, возрастает мышечная сила.

    В опытах на животных установлено, что введение препаратов андрогенных гормонов (анаболиков) вызывает значительную интенсификацию синтеза мышечных белков, в результате чего увеличивается масса тренируемых мышц и как результат — их сила. Вместе с тем развитие рабочей гипертрофии скелетных мышц может происходить и без участия андрогенных и других гормонов (гормона роста, инсулина и тироидных гормонов).

    Силовая тренировка, как и другие виды тренировки, по-видимому, не изменяет соотношения в мышцах двух основных типов мышечных волокон — быстрых и медленных. Вместе с тем она способна изменять соотношение двух видов быстрых волокон, увеличивая процент быстрых гликолитических (БГ) и соответственно уменьшая процент быстрых окислительно-гликол тических (БОГ) волокон. При этом в результате силовой тренировки, степень гипертрофии быстрых мышечных волокон значительно больше, чем медленных окислительных (МО) волокон, тогда как тренировка выносливости ведет к гипертрофии в первую очередь медленных волокон. Эти различия показывают, что степень рабочей гипертрофии мышечного волокна зависит как от меры его использования в процессе тренировок, так и от его способности к гипертрофии.

    Силовая тренировка связана с относительно небольшим числом повторных максимальных или близких к ним мышечных сокращений, в которых участвуют как быстрые, так и медленные мышечные волокна. Однако и небольшого числа повторений достаточно для развития рабочей гипертрофии быстрых волокон, что указывает на их большую предрасположенность к развитию рабочей гипертрофии (по сравнению с медленными волокнами). Высокий процент быстрых волокон в мышцах служит важной предпосылкой для значительного роста мышечной силы при направленной силовой тренировке. Поэтому люди с высоким процентом быстрых волокон в мышцах имеют более высокие потенциальные возможности для развития силы и мощности.

    Тренировка выносливости связана с большим числом повторных мышечных сокращений относительно небольшой силы, которые в основном обеспечиваются активностью медленных мышечных волокон. Поэтому понятна более выраженная рабочая гипертрофия медленных мышечных волокон при этом виде тренировки по сравнению с гипертрофией быстрых волокон, особенно быстрых гликолитических.

    Физиологические основы скоростно-силовых качеств (мощности).

    Максимальная мощность (иногда называемая «взрывной» мощностью) является результатом оптимального сочетания силы и скорости. Мощность проявляется во многих спортивных упражнениях: в метаниях, прыжках, спринтерском беге, борьбе. Чем выше мощность развивает спортсмен, тем большую скорость он может сообщить снаряду или собственному телу, так как финальная скорость снаряда (тела) определяется силой и скоростью приложенного воздействия.

    Мощность может быть увеличена за счет увеличения силы или скорости сокращения мышц или обоих компонентов. Обычно наибольший прирост мощности достигается за счет увеличения мышечной силы.
    Силовой компонент мощности (динамическая сила).
    Мышечная сила, измеряемая в условиях динамического режима работы мышц (концентрического или эксцентрического сокращения), обозначается как динамическая сила. Она определяется по ускорению, сообщаемому массе при концентрическом сокращении мышц, или по замедлению (ускорению с обратным знаком) движения массы при эксцентрическом сокращении мышц. Такое определение основано на физическом законе, согласно которому Р = т • а. При этом проявляемая мышечная сила зависит от величины перемещаемой массы: в некоторых пределах с увеличением, массы перемещаемого тела показатели силы растут.

    Дальнейшее увеличение массы не сопровождается приростом динамической силы.

    При измерении динамической силы испытуемый выполняет движение, которое требует сложной внемышечной и внутримышечной координации. Поэтому показатели динамической силы значительно различаются у разных людей и при повторных измерениях у одного и того же человека, причем больше, чем показатели изометрической (статической) силы.

    Динамическая сила, измеряемая при концентрическом сокращении мышц, меньше, чем статическая сила. Конечно, такое сравнение проводится при максимальных усилиях испытуемого в обоих случаях и при одинаковом суставном угле. В режиме эксцентрических сокращений (уступающий режим) мышцы способны проявлять динамическую силу, значительно превышающую максимальную изометрическую. Чем больше скорость движения, тем больше проявляемая динамическая сила при уступающем режиме сокращения мышц.

    У одних и тех же испытуемых обнаруживается умеренная корреляция между показателями статической и динамической силы (коэффициенты корреляции в пределах 0,6—0,8).

    Увеличение динамической силы в результате динамической тренировки может не вызывать повышения статической силы. Изометрические упражнения или не увеличивают динамической силы, или увеличивают значительно меньше, чем статическую. Все это указывает на чрезвычайную специфичность тренировочных эффектов: использование определенного вида упражнений (статического или динамического) вызывает наиболее значительное повышение результата именно в этом виде упражнений. Более того, наибольший прирост мышечной силы обнаруживается при той же скорости движения, при которой происходит тренировка.

    К одной из разновидностей мышечной силы относится так называемая взрывная сила, которая характеризует способность к быстрому проявлению мышечной силы. Она в значительной мере определяет, например, высоту прыжка вверх с прямыми ногами или прыжка в длину с места, переместительную скорость на коротких отрезках бега с максимально возможной скоростью. В качестве показателей взрывной силы используются градиенты силы, т. е. скорость ее нарастания, которая определяется как отношение максимальной проявляемой силы к времени ее достижения или как время достижения какого-нибудь выбранного уровня мышечной силы (абсолютный градиент), либо половины максимальной силы, либо какой-нибудь другой ее части (относительный градиент силы). Градиент силы выше у представителей скоростно-силовых видов спорта (спринтеров), чем у не спортсменов или спортсменов, тренирующихся на выносливость. Особенно значительны различия в абсолютных градиентах силы.

    Показатели взрывной силы мало зависят от максимальной произвольной изометрической силы. Так, изометрические упражнения, увеличивая статическую силу, незначительно изменяют взрывную силу, определяемую по показателям градиента силы или по показателям прыгучести (прыжками вверх с прямыми ногами или прыжка с места в длину). Следовательно, физиологические механизмы, ответственные за взрывную силу, отличаются от механизмов, определяющих статическую силу. Среди координационных факторов важную роль в проявлении взрывной силы играет характер импульсации мотонейронов активных мышц — частота их импульсации в начале разряда и синхронизация импульсации разных мотонейронов. Чем выше начальная, частота импульсации мотонейронов, тем быстрее нарастает мышечная сила.

    В проявлении взрывной силы очень большую роль играют скоростные сократительные свойства мышц, которые в значительной мере зависят от их композиции, т. е. соотношения быстрых и медленных волокон. Быстрые волокна составляют основную массу мышечных волокон у высококвалифицирован ых представителей скоростно-силовых видов спорта. В процессе тренировки эти волокна подвергаются более значительной гипертрофии, чем медленные. Поэтому у спортсменов скоростно-силовых видов спорта быстрые волокна составляют основную массу мышц (или иначе занимают на поперечном срезе значительно большую площадь) по сравнению с нетренированными людьми или представителями других видов спорта, особенно тех, которые требуют проявления преимущественно выносливости. Согласно второму закону Ньютона, чем больше усилие (сила), приложенное к массе, тем больше скорость, с которой движется данная масса. Таким образом, сила сокращения мышц влияет на скорость движения: чем больше сила, тем быстрее движение.

    Физиологические механизмы развития силы.

    В развитии мышечной силы имеют значение: 1) внутримышечные факторы, 2) особенности нервной регуляции и 3) психофизиологические механизмы.
    Внутримышечные факторы развития силы включают в себя биохимические, морфологические и функциональные особенности мышечных волокон.

    • Физиологический поперечник, зависящий от числа мышечных волокон (он наибольший для мышц с перистым строением);

    • Состав (композиция) мышечных волокон, соотношение слабых и более возбудимых медленных мышечных волокон (окислительных, мало утомляемых) и более мощных высоко пороговых быстрых мышечных волокон (гликолитических, утомляемых);

    • Миофибриллярная гипертрофия мышцы - т.е. увеличение мышечной массы, которая развивается при силовой тренировке в результате адаптационно-трофичес их влияний и характеризуется ростом толщины и более плотной упаковкой сократительных элементов мышечного волокна - миофибрилл. (При этом окружность плеча может достигать 80 см, а бедра - 95 см и более). Нервная регуляция обеспечивает развитие силы за счет совершенствования деятельности отдельных мышечных волокон, двигательных единиц (ДЕ) целой мышцы и межмышечной координации. Она включает в себя следующие факторы:

    • Увеличение частоты нервных импульсов, поступающих в скелетные мышцы от мотонейронов спинного мозга и обеспечивающих переход от слабых одиночных сокращений их волокон к мощным тетаническим;

    • Активация многих ДЕ - при увеличении числа вовлеченных в двигательный акт ДЕ повышается сила сокращения мышцы;

    • Синхронизация активности ДЕ - одновременное сокращение возможно большего числа активных ДЕ резко увеличивает силу тяги мышцы;

    • Межмышечная координация - сила мышцы зависит от деятельности других мышечных групп: сила мышцы растет при одновременном расслаблении ее антагониста, она уменьшается при одновременном сокращении других мышц и увеличивается при фиксации туловища или отдельных суставов мышцами-антагонистам . Например, при подъеме штанги возникает явление натуживания (выдох при закрытой голосовой щели), приводящее к фиксации мышцами туловища спортсмена и создающие прочную основу для преодоления поднимаемого веса.

    Психофизиологические механизмы увеличения мышечной силы связаны с изменениями функционального состояния (бодрости, сонливости, утомления), влияниями мотиваций и эмоций, усиливающих симпатические и гормональные воздействия со стороны гипофиза, надпочечников и половых желез, биоритмов.

    Важную роль в развитии силы играют мужские половые гормоны (андрогены), которые обеспечивают рост синтеза сократительных белков в скелетных мышцах. Их у мужчин в 10 раз больше, чем у женщин. Этим объясняется больший тренировочный эффект развития силы у спортсменов по сравнению со спортсменками, даже при абсолютно одинаковых тренировочных нагрузках.
    Открытие «эффекта андрогенов привело к попыткам ряда тренеров и спортсменов использовать для развития силы аналоги половых гормонов анаболические стероиды. Однако вскоре обнаружились пагубные последствия их приема. В результате действия анаболиков у спортсменов-мужчин подавляется функция собственных половых желез (вплоть до полной импотенции и бесплодия), а у женщин-спортсменок происходит изменение вторичных половых признаков по мужскому типу (огрубение голоса, изменение характера оволосения) и нарушается специфический биологический цикл женского организма (возникают отклонения в длительности и регулярности месячного цикла, вплоть до полного его прекращения и подавления детородной функции). Особенно тяжелые последствия наблюдаются у спортсменов-подростк в. В результате подобные препараты были отнесены к числу запрещенных допингов.

    Попытки заставить мышцу развивать мощные тетанические сокращения с помощью электростимуляции также не привели к успеху. Эффект воздействия прекращался через 1-2 недели, а искусственно вызванная способность развивать сильные сокращения не могла полноценно использоваться, так как не включалась в необходимые двигательные навыки.

    Функциональные резервы силы.

    У каждого человека имеются определенные резервы мышечной силы, которые могут быть включены лишь при экстремальных ситуациях (чрезвычайная опасность для жизни, чрезмерное психоэмоциональное напряжение и т.п.).

    В условиях электрического раздражения мышцы или под гипнозом можно выявить максимальную мышечную силу, которая окажется больше той силы, которую человек проявляет при предельном произвольном усилии - так называемой максимальной произвольной силы. Разница между максимальной мышечной силой и максимальной произвольной силой называется дефицитом мышечной силы. Эта величина уменьшается в ходе силовой тренировки, так как происходит перестройка морфофункциональных возможностей мышечных волокон и механизмов их произвольной регуляции.

    У систематически тренирующихся спортсменов наряду с экономизацией функций происходит относительное увеличение общих и специальных физиологических резервов. При этом первые реализуются через общие для различных упражнений проявления физических качеств, а вторые - в виде специальных для каждого вида спорта навыков и особенностей силы, быстроты и выносливости

    К числу общих функциональных резервов мышечной силы отнесены следующие факторы.

    • Включение дополнительных ДЕ в мышце;

    Синхронизация возбуждения ДЕ в мышце;

    • Своевременное торможение мышц-антагонистов;

    • Координация (синхронизация) сокращений мышц-антагонистов;

    • Повышение энергетических ресурсов мышечных волокон;

    • Переход от одиночных сокращений мышечных волокон к тетаническим;

    • Усиление сокращения после оптимального растяжения мышцы;

    • Адаптивная перестройка структуры и биохимии мышечных волокон (рабочая гипертрофия, изменение соотношения объемов медленных и быстрых волокон и др.).
    Заключение
    Организм представляет собой неразрывное целое, существующее в определенных, постоянно изменяющихся условиях окружающей среды. Поэтому при оценке уровня физического развития человека, необходимо учитывать, что имеется многообразие влияющих факторов на физическое развитие. Например, социально-экологические, оказывающие существенное влияние на морфофункциональное и психофизическое состояние организма.

    Необходимо следить, за своим уровнем физического развития, чтобы подобрать определенный комплекс упражнений, для поддержания и укрепления здоровья, который, кстати, может видоизменяться в зависимости от показателей уровня физического развития. Стоит помнить и о том, какое влияние будет оказывать и сам комплекс упражнений.

    Список используемой литературы:


    1. Анищенко В.С. Физическая культура: Методико–практические занятия студентов. // М.: Изд–во РУДН. 2018. – 145 с.

    2. Ильинич В. И. Физическая культура студента. // М.: Гардарики, 2013.

    3. Матвеев Л.П. Теория и методика физической культуры. // М.: ФиС, 2011. – 501с.

    4. Матвеев, Л.П. Теория и методика физической культуры / Л.П. Матвеев – М., 2011. – 308 с.





    написать администратору сайта