железы. Физиология эндокринной системы
Скачать 257.5 Kb.
|
Половые железы Половые железы, или гонады - семенники (яички) у мужчин и яичники у женщин относятся к числу желез со смешанной секрецией. Внешняя секреция связана с образованием мужских и женских половых клеток - сперматозоидов и яйцеклеток. Внутрисекреторная функция заключается в секреции мужских и женских половых гормонов и их выделении в кровь. Как семенники, так и яичники синтезируют и мужские и женские половые гормоны, но у мужчин значительно преобладают андрогены, а у женщин - эстрогены. Половые гормоны способствуют эмбриональной дифференцировке, в последующем развитию половых органов и появлению вторичных половых признаков, определяют половое созревание и поведение человека. В женском организме половые гормоны регулируют овариально-менструальный цикл, а также обеспечивают нормальное протекание беременности и подготовку молочных желез к секреции молока. Мужские половые гормоны (андрогены) Интерстициальные клетки яичек (клетки Лейдига) вырабатывают мужские половые гормоны. В небольшом количестве они также вырабатываются в сетчатой зоне коры надпочечников у мужчин и женщин и в наружном слое яичников у женщин. Все половые гормоны являются стероидами и синтезируются из одного предшественника - холестерина. Наиболее важным из андрогенов является тестостерон. Тестостерон разрушается в печени, а его метаболиты экскретируются с мочой в виде 17-кетостероидов. Концентрация тестостерона в плазме крови имеет суточные колебания. Максимальный уровень отмечается в 7-9 часов утра, минимальный - с 24 до 3 часов. Тестостерон участвует в половой дифференцировке гонады и обеспечивает развитие первичных (рост полового члена и яичек) и вторичных (мужской тип оволосения, низкий голос, характерное строение тела, особенности психики и поведения) половых признаков, появление половых рефлексов. Гормон участвует и в созревании мужских половых клеток - сперматозоидов, которые образуются в сперматогенных эпителиальных клетках семенных канальцев. Тестостерон обладает выраженным анаболическим действием, т.е. увеличивает синтез белка, особенно в мышцах, что приводит к увеличению мышечной массы, к ускорению процессов роста и физического развития. За счет ускорения образования белковой матрицы кости, а также отложения в ней солей кальция гормон обеспечивает рост, толщину и прочность кости. Способствуя окостенению эпифизарных хрящей, половые гормоны практически останавливают рост костей. Тестостерон уменьшает содержание жира в организме. Гормон стимулирует эритропоэз, чем объясняется большее количество эритроцитов у мужчин, чем у женщин. Тестостерон оказывает влияние на деятельность центральной нервной системы, определяя половое поведение и типичные психофизиологические черты мужчин. Продукция тестостерона регулируется лютеинизирующим гормоном аденогипофиза по механизму обратной связи. Повышенное содержание в крови тестостерона тормозит выработку лютропина, сниженное - ускоряет. Созревание сперматозоидов происходит под влиянием ФСГ. Клетки Сертоли, наряду с участием в сперматогенезе, синтезируют и секретируют в просвет семенных канальцев гормон ингибин, который тормозит продукцию ФСГ. Также о тестостероне Вы можете прочитать здесь . Недостаточность продукции мужских половых гормонов может быть связана с развитием патологического процесса в паренхиме яичек (первичный гипогонадизм) и вследствие гипоталамо-гипофизарной недостаточности (вторичный гипогонадизм). Различают врожденный и приобретенный первичный гипогонадизм. Причинами врожденного являются дисгенезии семенных канальцев, дисгенезия или аплазия яичек. Приобретенные нарушения функции яичек возникают вследствие хирургической кастрации, травм, туберкулеза, сифилиса, гонореи, осложнений орхита, например при эпидемическом паротите. Проявления заболевания зависят от возраста, когда произошло повреждение яичек. При врожденном недоразвитии яичек или при повреждении их до полового созревания возникает евнухоидизм. Основные симптомы этого заболевания: недоразвитие внутренних и наружных половых органов, а также вторичных половых признаков. У таких мужчин отмечаются небольшие размеры туловища и длинные конечности, увеличение отложения жира на груди, бедрах и нижней части живота, слабое развитие мускулатуры, высокий тембр голоса, увеличение молочных желез (гинекомастия), отсутствие либидо, бесплодие. При заболевании, развившемся в постпубертатном возрасте, недоразвитие половых органов менее выражено. Либидо часто сохранено. Диспропорций скелета нет. Наблюдаются симптомы демаскулинизации: уменьшение оволосения, снижение мышечной силы, ожирение по женскому типу, ослабление потенции вплоть до импотенции, бесплодие. Усиленная продукция мужских половых гормонов в детском возрасте приводит к преждевременному половому созреванию. Избыток тестостерона в постпубертатном возрасте вызывает гиперсексуальность и усиленный рост волос. Женские половые гормоны Эти гормоны вырабатываются в женских половых железах - яичниках, во время беременности - в плаценте, а также в небольших количествах клетками Сертоли семенников у мужчин. В фолликулах яичников осуществляется синтез эстрогенов, желтое тело яичника продуцирует прогестерон. К эстрогенам относятся эстрон, эстрадиол и эстриол. Наибольшей физиологической активностью обладает эстрадиол. Эстрогены стимулируют развитие первичных и вторичных женских половых признаков. Под их влиянием происходит рост яичников, матки, маточных труб, влагалища и наружных половых органов, усиливаются процессы пролиферации в эндометрии. Эстрогены стимулируют развитие и рост молочных желез. Кроме этого эстрогены влияют на развитие костного скелета, ускоряя его созревание. За счет действия на эпифизарные хрящи они тормозят рост костей в длину. Эстрогены оказывают выраженный анаболический эффект, усиливают образование жира и его распределение, типичное для женской фигуры, а также способствуют оволосению по женскому типу. Эстрогены задерживают азот, воду, соли. Под влиянием этих гормонов изменяется эмоциональное и психическое состояние женщин. Во время беременности эстрогены способствуют росту мышечной ткани матки, эффективному маточно-плацентарному кровообращению, вместе с прогестероном и пролактином - развитию молочных желез. При овуляции в желтом теле яичника, которое развивается на месте лопнувшего фолликула, вырабатывается гормон - прогестерон. Главная функция прогестерона - подготовка эндометрия к имплантации оплодотворенной яйцеклетки и обеспечение нормального протекания беременности. Если оплодотворение не наступает, желтое тело дегенерирует. Во время беременности прогестерон вместе с эстрогенами обусловливает морфологические перестройки в матке и молочных железах, усиливая процессы пролиферации и секреторной активности. В результате этого в секрете желез эндометрия возрастают концентрации липидов и гликогена, необходимых для развития эмбриона. Гормон угнетает процесс овуляции. У небеременных женщин прогестерон участвует в регуляции менструального цикла. Прогестерон усиливает основной обмен и повышает базальную температуру тела, что используется в практике для определения времени наступления овуляции. Прогестерон обладает антиальдостероновым эффектом. Концентрации тех или иных женских половых гормонов в плазме крови зависят от фазы менструального цикла. Овариально-менструальшлй (менструальньш) цикл Менструальный цикл обеспечивает интеграцию во времени различных процессов, необходимых для репродуктивной функции: созревание яйцеклетки и овуляцию, периодическую подготовку эндометрия к имплантации оплодотворенной яйцеклетки и др. Различают яичниковый цикл и маточный цикл. В среднем весь менструальный цикл у женщин продолжается 28 дней. Возможны колебания от 21 до 32 дней. Яичниковый цикл состоит из трех фаз: фолликулярной (с 1-го по 14-й день цикла), овуляторной (13-й день цикла) и лютеиновой (с 15-го по 28-й день цикла). Количество эстрогенов преобладает в фолликулярной фазе, достигая максимума за сутки до овуляции. В лютеиновую фазу преобладает прогестерон. Маточный цикл состоит из 4 фаз: десквамации (продолжительность 3-5 дней), регенерации (до 5-6-го дня цикла), пролиферации (до 14-го дня) и секреции (от 15 до 28-го дня). Эстрогены обусловливают пролиферативную фазу, во время которой происходит утолщение слизистой оболочки эндометрия и развитие его желез. Прогестерон способствует секреторной фазе. Продукция эстрогенов и прогестерона регулируется гонадотропными гормонами аденогипофиза, выработка которых увеличивается у девочек в возрасте 9-10 лет. При высоком содержании в крови эстрогенов угнетается секреция ФСГ и ЛГ аденогипофизом, а также гонадолиберина гипоталамусом. Прогестерон тормозит продукцию ФСГ. В первые дни менструального цикла под влиянием ФСГ происходит созревание фолликула. В это время увеличивается и концентрация эстрогенов, которая зависит не только от ФСГ, но и ЛГ. В середине цикла резко возрастает секреция ЛГ, что приводит к овуляции. После овуляции резко повышается концентрация прогестерона. По обратным отрицательным связям подавляется секреция ФСГ и ЛГ, что препятствует созреванию нового фолликула. Происходит дегенерация желтого тела. Падает уровень прогестерона и эстрогенов. Центральная нервная система участвует в регуляции нормального менструального цикла. При изменении функционального состояния ЦНС под влиянием различных экзогенных и психологических факторов (стресс) менструальный цикл может нарушаться вплоть до прекращения менструации. Недостаточная продукция женских половых гормонов может возникнуть при непосредственном воздействии патологического процесса на яичники. Это так называемый первичный гилогонодизм. Вторичный гипогонадизм встречается при снижении продукции гонадотропинов аденогипофизом, в результате чего наступает резкое уменьшение секреции эстрогенов яичниками. Первичная недостаточнось яичников может быть врожденной вследствие нарушений половой дифференцировки, а также приобретенной в результате хирургического удаления яичников или повреждения инфекционным процессом (сифилис, туберкулез). При повреждении яичников в детском возрасте отмечается недоразвитие матки, влагалища, первичная аменорея (отсутствие менструаций), недоразвитие молочных желез, отсутствие или скудное оволосение на лобке и под мышками, евнухоидные пропорции: узкий таз, плоские ягодицы. При развитии заболевания у взрослых недоразвитие половых органов менее выражено. Возникает вторичная аменорея, отмечаются различные проявления вегетоневроза. Плацента. Эпифиз. Тимус Плацента Плацента - это временный орган, формирующийся во время беременности. Она обеспечивает связь зародыша с организмом матери: регулирует поступление кислорода и питательных веществ, удаление вредных продуктов распада. Плацента выполняет также барьерную функцию, обеспечивая защиту плода от вредных для него веществ. Итак, к 16-й неделе беременности желтое тело в яичнике практически угасло. Всю заботу о гормональной продукции взяла на себя плацента. Она обеспечивает организм ребенка необходимыми белками и гормонами. Посмотрите, как внушителен их ряд: прогестерон, предшественники эстрогенов, хорионический гонадотропин, хориальный соматотропин, хориональный тиреотропин, адренокортикотропный гормон, окситоцин. релаксин. Гормоны плаценты обеспечивают нормальное протекание беременности. Наиболее изучен хорионический гонадотропин. По своим физиологическим свойствам он близок к гонадотропинам гипофиза. Гормон оказывает эффект на процессы дифференцировки и развитие плода, а также на обмен веществ матери: задерживает воду и соли, стимулирует выработку антидиуретического гормона и сам обладает антидиуретическим действием, стимулирует механизмы иммунитета. Из-за тесной функциональной связи плаценты с плодом принято говорить о "фетоплацентарном комплексе" или "фетоплацентарной системе". Дело в том, что и плод, и плацента в отдельности несовершенные системы из-за недостатка ферментов, необходимых для самостоятельного синтеза архиважных для всей беременности стероидных гормонов: прогестерона и эстрогенов. То ли дело вместе! И крохотные надпочечники ребенка вовсю "поддерживают" плаценту. Например, синтез эстриола в плаценте идет из предшественника дегидроэпиандростерона, который образуется в надпочечниках плода. Две ферментные системы трудятся содружественно, дополняя друг друга и образуя единое функциональное гормональное "сообщество". После рождения ребенка, плацента отделяется от стенок матки и рождается послед (примерно в течение 30 минут). Он состоит из плаценты, пуповины и плодных оболочек. Отделившийся послед опускается во влагалище, а затем при натуживании роженицы рождается. Отделение последа сопровождается небольшим (до 250 мл) кровотечением. Родившийся послед тщательно осматривается врачом для определения целости плаценты и плодных оболочек. Эпифиз Эпифиз (верхний мозговой придаток, пинеальная железа, шишковидная железа) является железой нейроглиального происхождения. Вырабатывает в первую очередь серотонин и мелатонин, а также норадреналин, гистамин. В эпифизе обнаружены пептидные гормоны и биогенные амины, что позволяет отнести его клетки (пинеалоциты) к клеткам АПУД-системы. Так, например, в нем вырабатываются аргинин-вазотоцин (стимулирует секрецию пролактина); эпифиз-гормон, или фактор "Милку"; эпиталамин - суммарный пептидный комплекс и др. Основной функцией эпифиза является регуляция циркадных (суточных) биологических ритмов, эндокринных функций и метаболизма и приспособление организма к меняющимся условиям освещенности. Избыток света тормозит превращение серотонина в мелатонин и другие метоксииндолы и способствует накоплению серотонина и его метаболитов. В темноте, напротив, усиливается синтез мелатонина. Этот процесс идет под влиянием ферментов, активность которых также зависит от освещенности. Учитывая, что эпифиз регулирует целый ряд важных реакций организма, а в связи со сменой освещенности эта регуляция циклична, можно считать его регулятором "биологических часов" в организме. Влияние эпифиза на эндокринную систему носит в основном ингибиторный характер. Доказано действие его гормонов на систему гипоталамус-гипофиз-гонады. Мелатонин угнетает секрецию гонадотропинов как на уровне секреции либеринов гипоталамуса, так и на уровне аденогипофиза. Мелатонин определяет ритмичность гонадотропных эффектов, в том числе продолжительность менструального цикла у женщин. Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный, анальгезирующий и седативный эффект. В эксперименте экстракты эпифиза вызывают инсулиноподобный (гипогликемический), паратиреоподобный (гиперкальциемический) и диуретический эффекты. Тимус Тимус, или вилочковая железа - парный орган, расположенный в верхнем средостении. После 30 лет подвергается возрастной инволюции. В вилочковой железе наряду с образованием из стволовых клеток костного мозга Т-лимфоцитов продуцируются гормональные факторы - тимозин и тимопоэтин. Гормоны обеспечивают дифференцировку Т-лимфоцитов и играют определенную роль в клеточных иммунных реакциях. Имеются также сведения, что гормоны обеспечивают синтез клеточных рецепторов к медиаторам и гормонам, например, рецепторов ацетилхолина на постсинаптических мембранах нервно-мышечных синапсов. Эндокринной активностью обладают также и другие органы. Почки синтезируют и секретируют в кровь ренин, эритропоэтин. В предсердиях продуцируется натрийуретический гормон, или ampuonenmuд. Клетки слизистой оболочки желудка и двенадцатиперстной кишки секретируют большое количество пептидных соединений, значительная часть которых выявляется также в мозге: секретин, гастрин, холецистокинин-панкреозимин, гастроингибирующий пептид, бомбезин, мотилин, соматостатин, нейротензин, панкреатический полипептид и др. Более подробно об этих веществах изложено в соответствующих разделах учебника. Гормональные средства, используемые в фармакологических целях Многие гормоны применяются в медицинской практике в качестве средств заместительной терапии при гипофункции соответствующих желез внутренней секреции, а также при лечении некоторых патологических процессов. Гормоны, не имеющие видовой специфичности, используются в виде экстрактов, выделенных из организма животных. Установление химической структуры эндогенных гормонов позволило осуществлять направленный синтез как самих гормонов, так и их активных аналогов и антигормонов. Гормоны, полученные синтетическим путем, а также их аналоги обладают более избирательным действием, оказывают свои влияния в меньших дозах, а значит, вызывают меньше побочных, нежелательных эффектов. Так, например, из задней доли гипофиза крупного рогатого скота и свиней получают гормональный препарат питуитрин, обладающий окситоциновой (маточной), вазопрессорной и антидиуретической активностью. Полученный синтетическим путем окситоцин обладает более избирательным действием на матку и применяется для вызывания и стимуляции родовой деятельности. Препарат задней доли гипофиза адиурекрин, основным действующим веществом которого является вазопрессин, используют для лечения несахарного диабета. Из передней доли гипофиза получают кортикотропин (назначают при гипофунции коры надпочечников), лактин, обладающий активностью пролактина (стимулирует лактацию в послеродовом периоде). Для ускорения роста используют фармакологические препараты соматотропин и соматолиберин человека, так как эти гормоны обладают видовой специфичностью. В качестве лекарственных средств, обладающих активностью ФСГ, применяют гонадотропин менопаузный, получаемый из мочи женщин, находящихся в менопаузе, а с активностью ЛГ - гонадотропин хорионический, выделяемый из мочи беременных женщин. При гипотиреозе применяют гормональный препарат из щитовидных желез убойного скота тиреоидин (тироксин и трийодтиронин) и синтетический препарат трийодтиронин. Для лечения сахарного диабета используют инсулин из поджелудочной железы свиней и человека. При недостаточной функции яичников применяют эстрон (фолликулин), выделенный из мочи беременных женщин и животных. Синтетический гормон прогестерон назначают при бесплодии и невынашивании беременности. Способность прогестинов блокировать высвобождение рилизинг-факторов гипоталамуса, угнетать секрецию гипофизом гонадотропных гормонов и тормозить овуляцию явилась основанием для использования прогестинов в качестве контрацептивных средств. Контрацептивное действие усиливается при сочетанном применении прогестинов с эстрогенами. При нарушении половой функции у мужчин применяют синтетический гормон тестостерон или синтетический аналог метилтестостерон. Наиболее широкое применение в медицинской практике имеют гормоны коры надпочечников - кортикостероиды, получаемые в настоящее время синтетическим путем: минералокортикоид - дезоксикортикостерона ацетат и глюкокортикоиды - кортизон, гидрокортизон. Более активными, чем природные глюкокортикоиды, являются их синтетические аналоги (преднизон, преднизолон, дексаметазон). Они используются не только при гипофункции коры надпочечников, но и как противовоспалительные, противоаллергические средства, в качестве иммунодепрессантов при трансплантации органов и тканей для торможения реакции отторжения. Введение этих веществ в большом количестве может вызвать описанные выше эффекты глюкокортикоидов, но в более выраженной форме, и явиться побочным действием этих веществ. Так, надо учитывать, что, подавляя воспалительные процессы, глюкокортикоиды одновременно ослабляют защитные иммунные реакции организма. Нежелательным побочным действием является также торможение образования рубца при заживлении язвы желудка или других внутренних повреждений тканей. Так как глюкокортикоиды стимулируют секрецию соляной кислоты, их не следует назначать больным с язвой желудка. Разрушение белкового матрикса костей может привести к патологическому состоянию - остеопорозу. При длительном лечении глюкокортикоидами может развиться преддиабетическое состояние вплоть до сахарного диабета (стероидный диабет), так как эти вещества являются антагонистами инсулина. Знание биоритмов выделения гормонов необходимо учитывать в клинической практике при распределении суточной дозы гормонов. Кроме того, при длительном лечении кортикоидными гормонами необходимо помнить, что эти лекарства нельзя резко отменять, так как при длительном лечении экзогенными кортикоидами тормозится выработка АКТГ аденогипофизом по механизму отрицательной обратной связи. В этих условиях ослабляется или даже полностью прекращается выработка корой надпочечников собственных эндогенных кортикоидов. Если резко прекратить введение экзогенных кортикоидов, развивается острая надпочечниковая недостаточность, которая может привести к летальному исходу. Это патологическое состояние получило название "синдром отмены". Для предотвращения атрофии надпочечников надо одновременно назначать кортикотропин. Паращитовидные железы (glandulae parathyroideae; синоним: околощитовидные железы, паратиреоидные железы, эпителиальные тельца) — железы внутренней секреции, продуцирующие гормон, участвующий в регуляции кальциевого и фосфорного обмена. У человека обычно две пары паращитовидных желез — верхняя и нижняя, однако число паращитовидных желез может варьировать от 4 до 12. Верхние паращитовидные железы . располагаются на задней поверхности щитовидной железы, на уровне верхних полюсов ее долей, вне капсулы. Нижние паращитовидные железы расположены, как правило, на уровне нижних полюсов долей щитовидной железы, однако паращитовидные железы этой пары, как и добавочные паращитовидные железы , могут находиться в толще щитовидной железы, под ее капсулой, в переднем или заднем средостении, у вилочковой железы, позади пищевода, вблизи сонной артерии в месте ее бифуркации и др. Паращитовидные железы имеют округлую или удлиненную форму, они слегка сплющены, длина каждой железы от 2 до 8 мм, ширина 3—4 мм, толщина от 1,5 до 3 мм. Масса всех паращитовидных желез. в среднем составляет около 0,5 г (масса нижних П. ж. всегда больше массы верхних). Каждая паращитовидная железа покрыта тонкой соединительнотканной капсулой, от которой внутрь железы отходят перегородки, в них располагаются кровеносные сосуды и вазомоторные нервные волокна. Кровоснабжение паращитовидных желез осуществляется в основном нижней щитовидной артерией, венозная кровь из паращитовидных желез собирается в вены щитовидной железы, трахеи и пищевода. Каждая паращитовидная железа иннервируется симпатическими волокнами верхних и нижних шейных, а также звездчатых узлов симпатического ствола своей половины, а парасимпатическая иннервация обеспечивается блуждающим нервом. Паренхима паращитовидных желез. взрослого человека состоит преимущественно из так называемых главных паратироцитов, среди которых различают темные главные и светлые главные клетки, и небольшого числа паратироцитов, избирательно окрашивающихся кислотными красителями, — так называемых ацидофильных паратироцитов. В паренхиме паращитовидных желез. можно обнаружить клетки переходного типа между главными и ацидофильными паратироцитами, которые располагаются чаще всего по периферии желез. Различают также паратироциты, получившие название «пустых» (так называемые водянистые клетки). Главные паратироциты образуют гроздья, тяжи и скопления, а у людей пожилого возраста — и фолликулы с гомогенным коллоидом. В ткань паращитовидных желез могут быть вкраплены К-клетки, продуцирующие кальцитонин (см. Щитовидная железа), их обнаруживают преимущественно в околокапиллярной зоне нижних паращитовидных желез. Физиологическое значение паращитовидной железы, состоит в секреции ими паратгормона, который вместе с кальцитонином, являющимся его антагонистом, и витамином D участвует в регуляции обмена кальция и фосфора в организме. Паратгормон (паратиреоидный гормон, паратиреокрин, паратирин, кальцитрин) представляет собой полипептид с молекулярной массой около 9500, построенный из 84 аминокислотных остатков. Регуляция деятельности паращитовидных желез осуществляется по принципу обратной связи, регулирующим фактором является содержание кальция в крови, регулирующим гормоном — паратгормон. Основным стимулом к выбросу в кровоток паратгормона служит снижение концентрации кальция в крови (норма 2,25—2,75 ммоль/л, или 9—11 мг/100 мл). Органами-мишенями для паратгормона являются скелет и почки; паратгормон оказывает также влияние на кишечник, усиливая всасывание кальция. В костях паратгормон активирует резорбтивные процессы, что сопровождается поступлением кальция и фосфатов в кровь (с чем и связано повышение концентрации кальция в крови под действием паратгормона). Влияние паратгормона на остеокласты ингибируется кальцитонином. Деминерализация костной ткани при избытке паратгормона сопровождается увеличением активности щелочной фосфатазы в сыворотке крови (см. Фосфатазы) и повышением выведения оксипролина (специфического компонента коллагена) с мочой из-за резорбции под влиянием паратгормона органического матрикса кости. В почках паратгормон уменьшает реабсорбцию фосфата в дистальных отделах почечных канальцев. Значительное увеличение выведения фосфатов с мочой (фосфатурический эффект паратгормона) сопровождается понижением содержания фосфора в крови. Несмотря на некоторое усиление реабсорбции кальция в почечных канальцах под влиянием паратгормона, выделение кальция с мочой из-за нарастающей гиперкальциемии в конечном счете увеличивается. Под влиянием паратгормона в почках стимулируется образование активного метаболита витамина D — 1,25-диоксихолекальциферола, который способствует увеличению всасывания кальция из кишечника. Т.о., действие паратгормона на всасывание кальция из кишечника может быть не прямым, а косвенным. Паратгормон уменьшает отложение кальция в хрусталике (при нехватке этого гормона возникает катаракта), оказывает косвенное влияние на все кальцийзависимые ферменты и катализируемые ими реакции, в т.ч. на реакции, формирующие свертывающую систему крови. Метаболизируется паратгормон в основном в печени и почках, его экскреция через почки не превышает 1% от введенного в организм гормона. Время биологической полужизни паратгормона составляет 8—20 мин. Функциональную активность паращитовидных желез исследуют путем определения содержания паратгормона в сыворотке крови. Наиболее информативен радиоиммунологический метод исследования, однако и он имеет определенные ограничения, поскольку паратгормон в кровотоке гетерогенен и представлен рядом пептидов. Нормальным считается содержание паратгормона в крови в пределах от 0,15 до 0,6—1,0 пг/мл. Регулируемость функции паращитовидной железы и степень ее автономии (при опухолевых процессах) оценивают по изменению концентрации паратгормона в крови при нагрузках препаратами кальция и снижении содержания кальция в пробе с кальцитрином (кальцитонином). Поскольку изменение функции паращитовидной железы сопровождается характерными биохимическими сдвигами, для ее косвенной оценки устанавливают концентрацию общего кальция и ионизированного Са2+ и неорганического фосфора в сыворотке крови, экскрецию кальция и фосфатов с мочой за сутки, определяют реабсорбцию фосфатов в дистальных отделах почечных канальцев и активность щелочной фосфатазы в сыворотке крови. При гиперфункции паращитовидной железы выявляют увеличение концентрации общего и ионизированного кальция и снижение концентрации фосфора в крови, избыточную экскрецию кальция с мочой, снижение относительной величины канальцевой реабсорбции фосфатов, повышение активности щелочной фосфатазы в сыворотке крови. При гипофункции паращитовидной железы отмечают гипокальциемию, гипофосфатемию, гипокальциурию и гипофосфатурию. Тем не менее сложность и многообразие механизмов, контролирующих гомеостаз кальция и фосфора, требуют в каждом случае комплексной оценки всех теоретически возможных факторов, участвующих в процессе регуляции фосфорно-кальциевого обмена (см. Минеральный обмен). Паратгормон стимулирует аденилатциклазу и усиливает почечную экскрецию циклического 3,'5'-АМФ (цАМФ); содержанием цАМФ в суточной моче может служить показателем состояния функции П. ж. Нагрузка солями кальция у здоровых людей подавляет секрецию паратгормона и экскрецию цАМФ, при гиперпаратиреозе — не изменяет этих показателей; при гипопаратиреозе экскреция цАМФ после нагрузки солями кальция снижается и достигает нормы только после введения препаратов паратгормона. Для дифференциальной диагностики гиперкальциемии используют пробу так называемого стероидного подавления (гиперкальциемия, не связанная с повышенной секрецией паратгормона, может быть ликвидирована кортикостероидами); пробу с нагрузкой тиазидовыми диуретиками, которые подавляют кальциурию, что при гиперпаратиреозе приводит к резкому повышению концентрации кальция в крови, в то время как у лиц без гиперпаратиреоза этого не наблюдается; пробу на толерантность к кальцию (при введении препаратов кальция больному гиперпаратиреозом функция паращитовидной железы не изменяется, в других случаях секреция паратгормона подавляется); тест с кальцитрином (кальцитонином), который повышает концентрацию паратгормона и снижает, но не до нормальных величин, содержание кальция в крови при гиперпаратиреозе, однако не влияет на концентрацию паратгормона при гиперкальциемии другого происхождения, и др. Как правило, для дифференциальной диагностики гиперкальцимии применяют несколько различных проб. Для анатомической характеристики паращитовидных желез и определения их локализации используют рентгенографию (томографию) загрудинного пространства с контрастированием пищевода бариевой взвесью (проба Реберга — Земцова), радионуклидное сканирование паращитовидных желез с 75Se-селенметионином, ультразвуковое исследование, компьютерную томографию, термографию, а также селективную артериографию, катетеризацию вен с селективным забором крови для определения концентрации паратгормона. Эпифиз, его гормональные функции ЭПИФИЗ (шишковидная, или пинеальная, железа), небольшое образование, расположенное у позвоночных под кожей головы или в глубине мозга; функционирует либо в качестве воспринимающего свет органа либо как железа внутренней секреции, активность которой зависит от освещенности. У некоторых видов позвоночных обе функции совмещены. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название (греч. epiphysis – шишка, нарост). Эпифиз развивается в эмбриогенезе из свода (эпиталамуса) задней части (диэнцефалона) переднего мозга. У низших позвоночных, например у миног, могут развиваться две аналогичных структуры. Одна, располагающаяся с правой стороны мозга, носит название пинеальной, а вторая, слева, парапинеальной железы. Пинеальная железа присутствует у всех позвоночных, за исключением крокодилов и некоторых млекопитающих, например муравьедов и броненосцев. Парапинеальная железа в виде зрелой структуры имеется лишь у отдельных групп позвоночных, таких, как миноги, ящерицы и лягушки. Функция. Там, где пинеальная и парапинеальная железы функционируют в качестве органа, воспринимающего свет, или «третьего глаза», они способны различать лишь разную степень освещенности, а не зрительные образы. В этом качестве они могут определять некоторые формы поведения, например вертикальную миграцию глубоководных рыб в зависимости от смены дня и ночи. У земноводных пинеальная железа выполняет секреторную функцию: она вырабатывает гормон мелатонин, который осветляет кожу этих животных, уменьшая занимаемую пигментом площадь в меланофорах (пигментных клетках). Мелатонин обнаружен также у птиц и млекопитающих; считается, что у них он обычно оказывает тормозящий эффект, в частности снижает секрецию гормонов гипофиза. У птиц и млекопитающих эпифиз играет роль нейроэндокринного преобразователя, отвечающего на нервные импульсы выработкой гормонов. Так, попадающий в глаза свет стимулирует сетчатку, импульсы от которой по зрительным нервам поступают в симпатическую нервную систему и эпифиз; эти нервные сигналы вызывают угнетение активности эпифизарного фермента, необходимого для синтеза мелатонина; в результате продукция последнего прекращается. Наоборот, в темноте мелатонин снова начинает вырабатываться. Таким образом, циклы света и темноты, или дня и ночи, влияют на секрецию мелатонина. Возникающие ритмические изменения его уровня – высокий ночью и низкий в течение дня – определяют суточный, или циркадианный, биологический ритм у животных, включающий периодичность сна и колебания температуры тела. Кроме того, отвечая на изменения продолжительности ночи изменением количества секретируемого мелатонина, эпифиз, вероятно, влияет на сезонные реакции, такие как зимняя спячка, миграция, линька и размножение. У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и, вероятно, «зимние депрессии». Интересные факты об эпифизе Шишковидное тело (эпифиз, пинеальная железа, верхний мозговой придаток) - это небольшое овальное железистое образование, которое относится к промежуточному мозгу и располагается в неглубокой борозде между верхними холмиками среднего мозга и над таламусом. Масса железы у взрослого человека около 0,2 г, длина 8-15 мм, ширина 6-10 мм, толщина 4-6 мм. Снаружи шишковидное тело покрыто мягкой соединительнотканной оболочкой мозга, которая содержит множество анастомозируюших (соединяющихся между собой) кровеносных сосудов. Клеточными элементами паренхимы являются специализированные железистые клетки - пинеоциты и глиальные клетки - глиоциты. Эпифиз вырабатывает в первую очередь серотонин и мелатонин, а также норадреналин, гистамин. В эпифизе обнаружены пептидные гормоны и биогенные амины. Основной функцией эпифиза является регуляция циркадных (суточных) биологических ритмов, эндокринных функций, метаболизма (обмена веществ) и приспособление организма к меняющимся условиям освещенности. Мелатонин определяет ритмичность гонадотропных эффектов, в том числе продолжительность менструального цикла у женщин. Этот гормон изначально был выделен из шишковидных тел крупного рогатого скота, и, как выяснилось, оказывает тормозящее влияние на функцию половых желез, точнее сдерживает выделяемый уже другой железой (гипофизом) гормон роста. После удаления эпифиза у цыплят наступает преждевременное половое созревание (тот же эффект возникает и в результате опухоли эпифиза). У млекопитающих удаление шишковидного тела вызывает увеличение массы тела, у самцов - гипертрофию (увеличение) семенников и усиление сперматогенеза, а у самок - удлинение периода жизни желтых тел яичника и увеличение матки. Избыток света тормозит превращение серотонина в мелатонин. В темноте, напротив, усиливается синтез мелатонина. Этот процесс идет под влиянием ферментов, активность которых также зависит от освещенности. Этим объясняют повышение половой активности животных и птиц весной и летом, когда в результате увеличения продолжительности дня, секреция эпифиза подавляется. Учитывая, что эпифиз регулирует целый ряд важных реакций организма, а в связи со сменой освещенности эта регуляция циклична, можно считать его регулятором "биологических часов" в организме. Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный и успокаивающий эффект. Маленький вырост мозга, скрытый под большими полушариями, за свой внешний вид получил название шишковидной железы. Тело в виде сосновой шишки изображалось когда-то в тех местах папирусов, где говорилось о вхождении душ покойных в судный зал Осириса. Весьма архаичное значение шишки (а ведь "шишки" бывают важными) - символ вечной жизни, а также восстановления здоровья. Функции этой железы оставались непонятными многие-многие годы. Кое-кто расценивал железу как рудиментарный глаз, ранее предназначавшийся для того, чтобы человек мог оберегать себя сверху. Но структурным аналогом глаза такую железу - эпифиз можно признать лишь у миног, у пресмыкающихся, а не у нас. В мистической литературе периодически встречалось утверждение о контакте именно этой железы с таинственной нематериальной нитью, связывающей голову с парящим над каждым эфирным телом. Из сочинения в сочинение перекочевывало описание этого органа, способного якобы восстанавливать образы и опыт прошлой жизни, регулировать поток мысли и баланс интеллекта, осуществлять телепатическое общение. Французский философ Р. Декарт (XVII век) считал, что железа выполняет посреднические функции между духами, то есть впечатлениями, поступающими от парных органов - глаз, ушей, рук. Здесь, в эпифизе, под влиянием "паров крови" формируются гнев, радость, страх, печаль. Фантазия великого француза наделила желёзку возможностью не только двигаться, но и направлять "животные духи" через поры мозга по нервам к мышцам. Это потом уже выяснили, что двигаться эпифиз не в состоянии. Доказательством исключительности эпифиза ряд лет служило и то, что сердце тоже не имеет пары, а лежит "посреди". Да и существует шишковидная железа, как Декарт ошибочно предполагал, только у человека. В старинных русских медицинских руководствах железа эта называлась "душевной". В двадцатых годах прошлого века многие специалисты пришли к заключению, что и говорить-то об этой железе не следует, ибо какой-либо значимой функции у предполагаемого рудиментарным органа нет. Появлялись сомнения в том, что эпифиз массой в двести миллиграммов и величиной с горошину функционирует не только в эмбриогенезе, а и после рождения. Все это привело к тому, что на ряд десятилетий из поля зрения исследователей этот "третий глаз" выпал. Правда, были и объективные причины. Среди них сложность изучения, требовавшая новых методов, и топографическое неудобство - уж очень трудно извлечь этот орган. Теософы, в свою очередь, не сомневались, что эпифиз пока большинству не очень нужен, а вот в будущем окажется необходимым для передачи мыслей от одного человека к другому. Синтез научного и эзотерического знания об эпифизе В 1695 году в Москве врач В. Юровский представил к защите диссертацию о шишковидной железе. На основании своих анатомических исследований автор опровергал взгляды древних философов о локализации разума в эпифизе. Это исследование можно считать началом объективного, материалистического подхода к изучению этой таинственной железы. Таинственной потому, что никто из последующих исследователей на основании своих работ не смог предложить сколь-нибудь правдоподобной гипотезы о роли шишковидной железы в организме. Основная информация о физиологическом значении эпифиза была получена наукой в последние десятилетия. Располагается железа в центре головного мозга, в задней части третьего желудочка. Длина ее редко превышает 10 мм, а ширина и высота - 7 и 4.5 мм соответственно. Здесь располагаются клетки, подобные пигментным клеткам сетчатой оболочки глаза и меланоцитам кожи. Уже в наше время выяснили, что эти клетки - пинеалоциты - в светлое время суток выделяют серотонин, а в темное - эти же клетки начинают синтезировать другое производное триптофана. Это вещество в 1958 году было идентифицировано как гормон эпифиза - мелатонин. Предполагают, что шишковидная железа выделяет и другие гормоны. Информация к органу о степени внешнего освещения поступает от сетчатки по симпатическим волокнам. А у некоторых животных, например у перелетных птиц, эпифиз обладает способностью улавливать изменение освещения непосредственно через покровы черепа. Кроме этого установлено, что эпифиз выполняет роль навигационных приборов при перелетах. У более примитивных животных в эпифизе обнаружены фоторецепторы, подобные рецепторам сетчатки глаза. Биологи подтверждают, что эволюционно эпифиз оказался в центре головного мозга не сразу. Первоначально он выполнял функцию "затылочного глаза", и только позднее, по мере развития полушарий мозга, эта железа оказалась практически в центре. Еще в эпифизе почти всех взрослых людей обнаружили достаточно прочные неорганические песчинки - мозговой песок - отложения солей кальция. Е.П. Блаватская писала в "Тайной Доктрине": "…этот песок весьма таинственный и ставит в тупик исследования всех материалистов. Только этот знак внутренней самостоятельной активности шишковидной железы не позволяет физиологам классифицировать ее как абсолютно бесполезный атрофировавшийся орган". Так в действительности и было. Например, уже не так давно, рентгенологи предлагали использовать рентгеноконтрастность эпифизарного песка для выявления смещений мозговых структур при внутричерепных объемных процессах. И только после открытия мелатонина ученые снова заинтересовались эпифизом. Максимальное количество мелатонина вырабатывается ночью, пик активности приходится примерно на 2 часа ночи, а уже к 9 часам утра его содержание в крови падает до минимальных значений. Экспериментально установлено, что мелатонин при приеме внутрь оказывает снотворное действие, не нарушая фазы сна, отмечен гипотензивный эффект, нормализация иммунных реакций организма и нейтрализация воздействия стресс-гормонов на ткани. Мелатонин оказался мощным естественным антиоксидантом и может использоваться для профилактики онкологических заболеваний. В литературе есть данные об эффективности его при бронхиальной астме, глаукоме, катаракте, в качестве безвредного контрацептива. Обощая весь комплекс эффектов, можно сказать, что мелатонин оказывает омолаживающее действие на организм в целом. По уровню секреторной активности выделяют три периода. Максимальная секреция мелатонина отмечена в детском возрасте. В 11-14 лет снижение продукции мелатонина эпифизом "запускает" гормональные механизмы полового созревания. И еще одно значимое снижение активности железы совпадает по времени с наступлением менопаузы. Один из исследователей, Вальтер Пьерпаоли, называет эпифиз "дирижером" эндокринной системы, так как на основании своих исследований пришел к выводу о том, что активность гипофиза и гипоталамуса управляется шишковидной железой. Оказалось также, что при сахарном диабете, при депрессиях и онкологических заболеваниях снижен синтез мелатонина, либо нарушен нормальный ритм его секреции. Прием гормона при этих заболеваниях приводил к положительным результатам. Помимо этого исследовалось воздействие факторов внешней среды на уровень секреции эндогенного мелатонина. Обнаружили, что синтез мелатонина прекращается при ярком освещении. Это открытие послужило толчком к возрождению фототерапии. И теперь светолечение на Западе широко применяется хронобиологами для лечения десинхронозов. Оказалось, что сокращение пищевого рациона экспериментальным животным на 60% приводит к увеличению продолжительности жизни в 1.5 раза. И у человека низкокалорийная диета замедляет процессы старения, снижает вероятность развития всех заболеваний, от которых чаще всего умирают люди в развитых странах (рак, болезни сердца, инсульты, атеросклероз, диабет). При этом специальными исследованиями установлено, что на ограничение рациона реагирует именно эпифиз, повышая секрецию мелатонина. Длительность жизни связана с общим количеством гормона, синтезирующегося в ночные часы. А работа эндокринной системы в целом очень чутко программируется в детстве, в зависимости от культуры питания. Выяснено также, что нормализации нарушенного ритма секреции мелатонина хорошо помогают дозированная гипоксия и физические нагрузки. Может оказаться, что именно эпифиз способен улавливать изменение электромагнитного фона. На это предположение наталкивает ряд фактов:
Тогда получится, что организм человека посредством эпифиза или другого органа достаточно жестко сцеплен с гео- и гелиокосмическими процессами. И не эту ли связь человека и Космоса через эпифиз имели ввиду древние мистики, называя шишковидную железу "Духовным Глазом"? А между тем, гистохимики пытались выяснить природу и значение "мозгового песка". Песчинки по размеру бывают от 5 мкм до 2 мм, часто по форме напоминают тутовую ягоду, то есть имеют фестончатые края. Состоят из органической основы - коллоида, который считается секретом пинеалоцитов, пропитанного солями кальция и магния, преимущественно фосфатами. Методом рентгенокристаллографического анализа было показано, что соли кальция на дифрактограммах эпифиза аналогичны кристаллам гидроксиапатита. Мозговые песчинки в поляризованном свете обнаруживают двойное лучепреломление с образованием "мальтийского" креста. Оптическая анизотропность указывает, что кристаллы солевых отложений эпифиза не являются кристаллами кубической сингонии. Благодаря наличию фосфорнокислого кальция, песчинки первично флуоресцируют в ультрафиолетовых лучах, как и капельки коллоида, голубовато-белым свечением. Подобную же, голубую флуоресценцию дают миелиновые оболочки нервных стволов. Обычно отложения солей имеют характер колец - слоев, чередующихся со слоями органического вещества. Большего о "мозговом песке" ученым выяснить пока не удалось. А теперь самое время вернуться к "Тайной Доктрине". Елена Петровна пишет следующее: "… Морганьи, Грейдинг и Гам были мудрыми людьми своего поколения, и сегодня тоже являются таковыми, так как они до сих пор единственные физиологи, которые..., подытожив факты, что они (песчинки) отсутствуют у малых детей, у престарелых и у слабоумных, сделали неизбежный вывод, что они (песчинки) должны быть связаны с умом". Еще более сокровенные сведения приводит Е.И. Рерих в письме к доктору А. Асееву: "…светящееся вещество, как бы песок, наблюдаемый на поверхности шишковидной железы у развитого человека. Этот песок и есть таинственное вещество, являющееся отложением Психической Энергии. Отложения Психической Энергии могут быть находимы во многих органах и нервных каналах". Очень серьезная подборка по метаболизму кальция в организме сделана В.Т. Волковым в его монографии по бронхиальной астме. еmу удалось обнаружить фосфаты кальция в смывах носоглотки у астматиков, в почечных камнях и т.д. он высказывает гипотезу, что и кристаллы Шарко-Лейдена представляют собой апатиты. Очень возможно, что и в препуциальных железах мускусных баранов в качестве носителя Психической Энергии откладываются фосфаты кальция. Эта тема в медицине и биологии еще ждет своих исследователей |