Главная страница
Навигация по странице:

  • Транспорт газов кровью

  • Обмен дыхательных газов в тканях

  • Регуляция дыхания. Дыхательный центр

  • Рефлекторная регуляция дыхания

  • Гуморальная регуляция дыхания

  • Дыхание при пониженном атмосферном давлении. Гипоксия

  • Дыхание при повышенном атмосферном давлении. Кессонная болезнь

  • lektsii по физиологии. Физиология, как наука


    Скачать 1.21 Mb.
    НазваниеФизиология, как наука
    Дата05.02.2019
    Размер1.21 Mb.
    Формат файлаpdf
    Имя файлаlektsii по физиологии.pdf
    ТипДокументы
    #66548
    страница17 из 30
    1   ...   13   14   15   16   17   18   19   20   ...   30
    Обмен газов в легких
    В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа, 79,03% азота. В альвеолярном воздухе содержится 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота.
    Дыхательные газы обмениваются в легких через альвеоло-капиллярную мембрану. Это область контакта альвеолярного эпителия и эндотелия капилляров. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону
    Дальтона, парциальное давление каждого газа в их смеси прямо пропорционально его содержанию в ней.
    Поэтому парциальное давление кислорода в альвеолярном воздухе 100 мм.рт.ст., а углекислого газа - 40 мм.рт.ст.
    Напряжение (термин применяемый для газов растворенных в жидкостях) кислорода в венозной крови капилляров легких 40 мм.рт.ст., а углекислого газа - 46 мм.рт.ст. Поэтому градиент давления по кислороду направлен из альвеол в капилляры, а для углекислого газа в обратную сторону.
    Кроме того, скорость диффузии зависит от площади газообмена, толщины мембраны и коэффициента растворимости газа в тканях. Общая поверхность альвеол составляет 50-80 м
    2
    , а толщина альвеоло-капиллярной мембраны всего 1 мкм. Это обеспечивает высокую эффективность газообмена. Показателем проницаемости мембраны является коэффициент диффузии Крога. Для углекислого газа он в 25 раз больше, чем для кислорода.
    Т.е. он диффундирует в 25 раз быстрее. Высокая скорость диффузии компенсирует более низкий градиент давления углекислого газа. Диффузионная способность легких для газа (л) характеризуется его количеством, которое обменивается за 1 минуту на 1 мм.рт.ст. градиента давления. Для кислорода в норме она равна 30 мл*мин/мм.pт.cт. У здорового человека напряжение дыхательных газов в альвеолярной крови, становится практически таким же, как их парциальное давление в альвеолярном воздухе. При нарушениях газообмена в альвеолах в крови повышается напряжение углекислого газа и снижается кислорода (пневмония, туберкулез, пневмосклероз).
    Транспорт газов кровью
    Напряжение кислорода в артериальной крови 95 мм.рт.ст. В растворенном состоянии кровью переносится всего
    0,3 об.% кислорода. Основная его часть транспортируется в виде НЬО. Максимальное количество кислорода, которое может связать гемоглобин при его полном насыщении, называется кислородной емкостью крови. В норме она составляет 18-24 об.% Образование оксигемоглобина в легких и его распад в капиллярах тканей в основном обусловлены изменениями напряжения кислорода. В капиллярах легких, где напряжение его велико, происходит его образование. В тканях напряжение кислорода падает, поэтому там окси-гемоглобин диссоциирует на восстановленный гемоглобин и кислород.
    В норме связывание гемоглобина с кислородом определяется его парциальным давлением в альвеолярном воздухе, а следовательно напряжением в крови легочных капилляров, Зависимость концентрации оксигемоглобина от напряжения кислорода в крови называется кривой диссоциации оксигемоглобина. Она не является прямо пропорциональной. При низком напряжении кислорода рост концентрации оксигемоглобина замедлен. При напряжении от 10 до 40 мм.рт.ст. он практически прямо пропорционален. А выше снова замедляется. Поэтому кривая имеет S-образную форму. Кроме напряжения кислорода, на образование и распад оксигемоглобина влияют и другие факторы. При сдвиге реакции крови в кислую сторону, его диссоциация ускоряется. Ее также ускоряет повышение напряжения углекислого газа и температуры. Эти изменения крови имеют место в капиллярах тканей, поэтому там они способствуют ускоренной диссоциации оксигемоглобина и освобождению кислорода.
    Напряжение углекислого газа в венозной крови 46 мм. рт. ст. Его перенос от тканей к легким также происходит несколькими путями. Всего в крови находится около 50 об% углекислого газа. В плазме растворяется 2,5 об.%. В виде карбгемоглобина, в соединении с глобином, переносится около 5 об%. Остальное количество транспортируется в виде гидрокарбонатов, находящихся в плазме и эритроцитах. В капиллярах тканей углекислый газ поступает в эритроциты. Там под влиянием фермента карбоангидразы он соединяется с катионами водорода и превращается в угольную кислоту. Она диссоциирует и большая часть гидрокарбонат- анионов выходит в плазму. Там они образуют с катионами натрия гидрокарбонат натрия. Меньшая их часть соединяется в эритроцитах с катионами калия, образуя гидрокарбонат калия.
    В капиллярах легких напряжение углекислого газа падает, а напряжение кислорода возрастает. Образующийся в эритроцитах оксигемоглобин является более сильной кислотой, чем угольная. Поэтому он вытесняет из гидрокарбоната калия анионы угольной кислоты и образует с калием калиевую соль оксигемоглобина.
    Освобождающиеся анионы угольной кислоты соединяются с катионами водорода. Синтезируется свободная угольная кислота. При низком напряжении углекислого газа карбоангидраза действует противоположным образом, т.е. расщепляет ее на углекислый газ и воду, которые выдыхаются. Одновременно из плазмы в эритроциты поступают анионы угольной кислоты, образующиеся в ходе диссоциации гидрокарбоната натрия.
    Они также образуют с катионами водорода угольную кислоту, которая расщепляется карбоангидразой на углекислый газ и воду. При дыхании из организма выводится около 200 мл углекислого газа в минуту. Это
    важный механизм поддержания кислотно-щелочного равновесия крови.
    Обмен дыхательных газов в тканях
    Обмен газов в капиллярах тканей происходит путем диффузии. Этот процесс осуществляется за счет разности их напряжения в крови, тканевой жидкости и цитоплазме клеток. Как и в легких для газообмена большое значение имеет величина обменной площади, т.е. количество функционирующих капилляров. В артериальной крови напряжение кислорода 96 мм.рт.ст., в тканевой жидкости около 20 мм.рт.ст., а работающих мышечных клетках близко к 0. Поэтому кислород диффундирует из капилляров в межклеточное пространство, а затем клетки. Для нормального протекания окислительно-восстановительных процессов в митохондриях необходимо, чтобы напряжение кислорода в клетках было не менее 1 мм.рт.ст. Эта величина называется критическим
    напряжением кислорода в митохондриях. Ниже ее развивается кислородное голодание тканей. В скелетных мышцах кислород накапливает белок миоглобин, по строению близкий к гемоглобину. Напряжение углекислого газа в артериальной крови 40 мм.рт.ст., в межклеточной жидкости 46 мм.рт.ст., в цитоплазме 60 мм.рт.ст.
    Поэтому он выходит в кровь. Количество кислорода, которое используется тканями называется коэффициентом его утилизации. В состоянии покоя ткани используют около 40% кислорода или 8-10 об%.
    Регуляция дыхания. Дыхательный центр
    В 1885 году Казгюкий физиолог НА. Миславский обнаружил, что в продолговатом мозге находится центр, обеспечивающий смену фаз дыхания. Этот бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя - выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха.
    Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха.
    В инспираторном центре имеется 2 группы нейронов. Это респираторные α- и β-нейроны. Первые возбуждаются при вдохе. Одновременно к β-респираторным нейронам поступают импульсы от экспираторных.
    Они активируются одновременно с α-респираторными нейронами и обеспечивают их торможение в конце вдоха.
    Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии - способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, а также воздействием на них углекислого газа.
    Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных - в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц.
    В передней части варолиева моста также имеются группы нейронов, участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гаспинг - длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста - апнейзис - дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов ЦНС в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.
    Рефлекторная регуляция дыхания
    Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:
    1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.
    2. Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз).
    Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.
    3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости.
    Эти явления возникают при застое в малом круге кровообращения или пневмониях.

    Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к β-респираторным нейронам, которые в свою очередь тормозят α- респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких.
    Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц.
    При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.
    Гуморальная регуляция дыхания
    В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов.
    Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение - гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает, частота и глубина дыхания увеличиваются. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.
    Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.
    Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.
    Дыхание при пониженном атмосферном давлении. Гипоксия
    Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм.рт.ст. На высоте 4000 м уже в 2 раза меньше. В результате уменьшается напряжение кислорода в крови. Возникает
    гипоксия. При быстром падении атмосферного давления наблюдается острая гипоксия. Она сопровождается эйфорией, чувством ложного благополучия, и скоротечной потерей сознания. При медленном подъеме гипоксия нарастает медленно. Развиваются симптомы горной болезни. Первоначально появляется слабость, учащение и углубление дыхания, головная боль. Затем начинаются тошнота, рвота, резко усиливаются слабость и одышка. В итоге также наступает потеря сознания, отек мозга и смерть.
    До высоты 3 км у большинства людей симптомов горной болезни не бывает. На высоте 5 км наблюдаются изменения дыхания, кровообращения, высшей нервной деятельности. На высоте 7 км эти явления резко усиливаются. Высота 8 км является предельной для жизнедеятельности. На этой высоте организм страдает не только от гипоксии, но и от гипокапнии. В результате снижения напряжения кислорода в крови возбуждаются хеморецепторы сосудов. Дыхание учащается и углубляется. Из крови выводится углекислый газ и его напряжение падает ниже нормы. Это приводит к угнетению дыхательного центра. Несмотря на гипоксию дыхание становится редким и поверхностным.
    В процессе адаптации к хронической гипоксии выделяют три стадии. На первой, аварийной, компенсация достигается за счет увеличения легочной вентиляции, усиления кровообращения, повышения кислородной емкости крови и т.д. На стадии относительной стабилизации происходят такие изменения систем, организма, которые обеспечивают более высокий, и выгодный уровень адаптации. В стабильной стадии физиологические показатели организма становятся устойчивыми за счет ряда компенсаторных механизмов. Так кислородная емкость крови увеличивается не только за счет возрастания количества эритроцитов, но и 2,3-фосфоглицерата в них. За счет 2,3-фосфоглицерата улучшается диссоциация оксигемоглобина в тканях. Появляется фетальный гемоглобин, имеющий более высокую способность связывать кислород. Одновременно повышается диффузионная способность легких и возникает "функциональная эмфизема". Т.е. в процесс дыхания включаются резервные альвеолы и увеличивается функциональная остаточная емкость. Энергетический обмен понижается, но повышается интенсивность обмена углеводов.

    Гипоксия - это недостаточное снабжение тканей кислородом. Формы гипоксии:
    1. Гипоксемическая гипоксия. Возникает при снижении напряжения кислорода в крови (уменьшение атмосферного давления, диффузионной способности легких и т.д.).
    2. Анемическая гипоксия. Является следствием понижения способности крови транспортировать кислород
    (анемии, угарное отравление).
    3. Циркуляторная гипоксия. Наблюдается при нарушениях системного и местного кровотока (болезни сердца и сосудов).
    4. Гистотоксическая гипоксия. Возникает при нарушении тканевого дыхания (отравление цианидами).
    Дыхание при повышенном атмосферном давлении. Кессонная болезнь
    Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол- кессон) работ. В этих условиях дыхание урежается до 2-4 раз в минуту. Вдох укорачивается, а выдох удлиняется и затрудняется. Газообмен в легких немного ускоряется. При обычном атмосферном давлении в плазме крови находится в растворенном состоянии около 1 об.% азота. Чем выше атмосферное давление, тем выше его растворимость, тем больше его накапливается в крови. Увеличивается количество растворенного азота и по мере удлинения времени подводных работ.
    При быстром снижении давления, например экстренном подъеме водолаза, растворимость азота резко падает.
    Он переходит в газообразную форму и образует в сосудах пузырьки – эмболы, закупоривающие просвет мелких сосудов. Возникает газовая эмболия и кровоснабжение тканей нарушается. Развивается кессонная болезнь, сопровождающаяся сильными болями в суставах, костях, мышцах, головной болью ("залом"). Появляются рвота, параличи, пострадавший теряет сознание. Для ее лечения пострадавшего помещают в декомпрессионную камеру, где давление вновь поднимают до полного растворения азота. Затем очень медленно снижают его, чтобы азот успевал выходить через легкие. Профилактика этого состояния проводится путем использования ступенчатой декомпрессии, т.е. когда водолаза поднимают на поверхность, то через каждые 10м подъема делают остановки на строго определенное время. Для дыхания на глубине применяют также газовую смесь, в которой азот замещается на гелий. Он практически не растворяется в плазме крови. Кроме этого азот на глубине больше 70 м, а кислород
    90 м приобретают наркотические свойства. Поэтому в гелиевой смеси всего 5% кислорода.
    1   ...   13   14   15   16   17   18   19   20   ...   30


    написать администратору сайта