Титульный лист (18)матем. Формирование умений решать текстовые задачи применять математические методы для решения профессиональных задач закрепление навыков решения простейших статистических задач
Скачать 2.65 Mb.
|
Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж" Программа среднего профессионального образования 44.02.02 Преподавание в начальных классах Дисциплина: Математика Практическое занятие 2 Выполнил: Обучающийся Хитрова Екатерина Павловна Преподаватель: Сазонова Элеонора Борисовна Цель занятия: формирование умений решать текстовые задачи; применять математические методы для решения профессиональных задач; закрепление навыков решения простейших статистических задач; закрепление навыков применять правила приближенных вычислений; закрепление навыков работы с основными свойствами геометрических фигур на плоскости и в пространстве. Задание 1. (Максимальное количество баллов – 3 балла) Таблица – «Виды моделирования при решении текстовых задач» В таблице «Виды моделирования при решении текстовых задач» заполните позицию «Необходимо определить» в графе «Интерпретация модели».
Задание 2. (Максимальное количество баллов – 3 балла) Используя диаграммы Эйлера-Венна решить задачу. При выборе кружков для детей оказалось, что 60% родителей желают, чтобы их ребенок посещал кружок рисования, 50% предпочли занятия по гимнастике, 50% отметили, что выбрали бы занятия музыкой. При этом 30% родителей предпочитают, чтобы их дети посещали занятия и по рисованию, и по гимнастике, 20% – сделали выбор в пользу занятий по гимнастике и музыке, а 40% родителей – пожелали бы, чтобы ребенок рисовал и занимался хоровым пением, и только 10% из них выразили свое мнение за посещение детьми всех кружков. Определите процентное соотношение родителей, которые: 1) не желают водить детей в кружки 40% родителей 2) выбрали не менее двух кружков. 60% родителей 1 4 5 6 2 7 3 Задание 3 (максимальное количество баллов – 5 баллов) При измерении получены данные:
Выполните задания с учетом исходных данных, подробно описывая ход решения. a) Построить статистический ряд распределения частот. b) Построить полигон распределения. c) Вычислить выборочную среднюю, дисперсию, моду, медиану. d) Построить выборочную функцию распределения. Построим вариационный ряд – выборку в порядке возрастания: 5, 5, 5, 10, 10, 15, 20, 20, 20, 20 Запишем таблицу частот:
Построим полигон частот: Общее число значений Найдем выборочное среднее : Найдем выборочную дисперсию : Поскольку наибольшая вероятность достигается при равном 20, то мода . Медианой дискретной случайной величины с 10 значениями называется среднее арифметическое 5 и 6 элемента: Частоты определим по формуле:
Функция распределения имеет вид: Задание 4 (максимальное количество баллов - 4 балла) Решите примеры, связанные с погрешностями, подробно описывая ход решения. a) Округлить число 4,45575250 до шести, пяти, четырех, трех, двух и одного десятичных знаков; до целого числа. b) Число 12,75 определено с относительной погрешностью 0,3, %. Найдите абсолютную погрешность округления. c) Определите верные и сомнительные цифры числа 13,27 ± 0,03. Ответ: a) 4,45575250 до шести знаков = 4,455753 4,45575250 до пяти знаков = 4,45575 4,45575250 до четырёх знаков = 4,4558 4,45575250 до трех знаков = 4,456 4,45575250 до двух знаков = 4,46 4,45575250 до одного знака = 4,5 4,45575250 до целого числа = 4 b) Округляя число 12,75 получаем 12,8. Прибавляем 1 к десятым, потому что сотые больше 5. Абсолютная погрешность равна модулю разницы между точным и округленным числом, 12,8 – 12,75 = 0,05 Относительная погрешность равна абсолютной, деленной на приближенное значение, выраженное в процентах, 0,05 / 12,8 * 100% = 0,003% c) Определение: «Цифра называется верной, если граница абсолютной погрешности данного приближенного значения числа не больше единицы того разряда, в котором записана эта цифра. В противном случае цифра называется сомнительной». цифра 7 – сомнительна, остальные – верные Задание 5 (максимальное количество баллов – 3 балла) Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением. На стороне AC треугольника ABC отмечена точка D так, что AD=3см, DC=10см. Площадь треугольника ABC равна 39 см2. Найдите площадь треугольника ABD. Д ано: треугольник ABC, AD=3см, DC=10см, S треугольника ABC=39 см2. Найти: S треугольника ABD Решение: B BH – общая высота, следовательно SABC/SABD = AC/AD 39/SABD = 13/3 13 SABD = 39*3 SABD = 39*3/13 = 9 Ответ: 9 см2. A 3 D Н С 10 Задание 6 (максимальное количество баллов – 4 балла) Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением. Биссектриса угла A параллелограмма ABCD пересекает его сторону BC в точке F. Найдите площадь параллелограмма ABCD, если BF=4 см, FC=2 см, а угол ABC равен 1500. Д 1500 ано: параллелограмм ABCD, BF=4 см, FC=2 см, ∠ABC=1500. Найти: S параллелограмма ABCD Решение: Накрест лежащие углы BFA и FAD равны, AF — биссектриса ∠BAD, следовательно, ∠ BFA и ∠ FAD = ∠ BAF B 4 F 2 C Значит, треугольник BFA равнобедренный и AB=BF=4 4 По формуле площади параллелограмма находим: A D S=AB*BC*sinBAD S=4*6*½=12 см2 Ответ: 12 см2 Задание 7 (максимальное количество баллов – 3 балла) Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6см и 8см, а боковое ребро призмы равно 12см. Дано: Найти: Sпов Решение: Сторона ромба a выражается через его диагонали и формулой Найдем площадь ромба Тогда площадь поверхности призмы равна Ответ: 288. Пермь - 2022Пермь - 2022Пермь - 2022Пермь - 2022Пермь - 2022Пермь - 2022Пермь - 2022Пермь - 2022Пермь - 2022 |