Главная страница

формула байса. 7. Формула полной вероятности и формула Байеса. Формула полной вероятности и формула Байеса


Скачать 23.41 Kb.
НазваниеФормула полной вероятности и формула Байеса
Анкорформула байса
Дата05.03.2023
Размер23.41 Kb.
Формат файлаdocx
Имя файла7. Формула полной вероятности и формула Байеса.docx
ТипДокументы
#969911

Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий  , которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

.

Эта формула называется формулой полной вероятности.

Вновь рассмотрим полную группу несовместных событий  , вероятности появления которых  . Событие А может произойти только вместе с каким-либо из событий  , которые будем называть гипотезами. Тогда по формуле полной вероятности



Если событие А произошло, то это может изменить вероятности гипотез  .

По теореме умножения вероятностей

,

откуда

.

Аналогично, для остальных гипотез



Полученная формула называется формулой Байеса (формулой Бейеса). Вероятности гипотез   называются апостериорными вероятностями, тогда как   - априорными вероятностями.

Решите

  1. В магазин поступила новая продукция с трех предприятий. Процентный состав этой продукции следующий: 20% - продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта

  2. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

  3. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.


а) Каков процент брака на конвейере?


б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

  1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности, найти вероятность того, что этот шар будет белым.

  2. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t.

  3. По объекту производится три одиночных (независимых) выстрела. Вероятность попадания при первом выстреле равна 0,4, при втором 0,5, при третьем 0,7. Для вывода объекта из строя заведомо достаточно трёх попаданий. При двух попаданиях он выходит из строя с вероятностью 0,6, при одном - с вероятностью 0,2. Найти вероятность того, что в результате трёх выстрелов объект будет выведен из строя.

  4. В двух урнах находится соответственно 4 и 5 белых и 6 и 3 чёрных шаров. Из каждой урны наудачу извлекается один шар, а затем из этих двух наудачу берется один. Какова вероятность, что это будет белый шар?

  5. 8Два автомата производят детали. Вероятность изготовления стандартной детали первым автоматом равна 0,8, вторым — 0,9. Производительность первого автомата впятеро выше производительности второго. Рабочий взял наугад деталь, и она оказалась стандартной. Какова вероятность, что эта деталь изготовлена вторым автомато


написать администратору сайта