Глава 6. Фосфорные удобрения
Скачать 295.5 Kb.
|
Глава 6. Фосфорные удобрения 6.1. Фосфор и его роль в питании растений Фосфор – один из трех главных элементов питания растений. По объемам использования в качестве удобрительного элемента он идет вслед за азотом. Это важнейший биогенный элемент, необходимый для жизнедеятельности всех организмов. Соединения фосфора с кислородом (фосфорные кислоты и фосфаты), являясь самыми распространенными в природе, имеют исключительно важное значение для существования и развития растительного и животного мира. Без фосфорной кислоты не может существовать ни одна живая клетка. В связи с этим фосфор назвали «ключом жизни». По некоторым литературным данным, способ получения фосфорной кислоты был известен арабским алхимикам уже в XII в. Но общепризнанной датой открытия фосфора считается 1669 г., когда немецкий аптекарь X. Брандт, как и другие алхимики Западной Европы, искал заветный «философский камень» и при прокаливании с песком сухого остатка от выпаривания мочи и последующей перегонке его без доступа воздуха получил «удивительное» светящееся в темноте вещество, свет которого не обжигал. В 1777 г. французский химик А. Лавуазье установил, что открытое X. Брандтом вещество представляет собой новый элемент, названный позже фосфором (от греческого phos – «свет», phoros – «несу» – несущий свет, «светоносец»). Фосфор образует несколько аллотропных форм: белый, красный и черный фосфор. При определенных условиях все три формы могут переходить друг в друга. Наибольшей химической активностью обладает белый фосфор. Красный фосфор используется в спичечном производстве. Однако красный элементарный фосфор перспективен в качестве удобрения. При добавлении к нему солей меди он окисляется в почве и переходит в доступное состояние. Фосфор содержится в растениях в органических (обычно до 90% общего количества) и минеральных соединениях. Соотношение органических и минеральных соединений фосфора зависит от возраста растений и общей обеспеченности их фосфором. В молодых растениях доля органического фосфора всегда значительно больше, чем в старых. Однако при обильном обеспечении почв фосфором доля неорганических фосфатов в более старых листьях может оказаться даже выше. В репродуктивных органах фосфора концентрируется в 3–6 раз больше, чем в вегетативных. Семена должны иметь запас фосфора, достаточный на период формирования корней, которые начнут поглощать его из почвы. Фосфор играет исключительно важную роль в жизнедеятельности растений. Он содержится в клеточной протоплазме, входит в состав хромосом, нуклеиновых кислот, фосфопротеидов, некоторых витаминов, ферментов, эфиров, фитина, других органических веществ и принимает активное участие в образовании белковых веществ. В процессах дыхания и брожения одну из центральных функций выполняет фосфорная кислота, являющаяся буфером при регуляции обмена углеводов. Частично в живых клетках фосфор присутствует в виде орто- и пирофосфорных кислот и их производных. Фосфатная группа обладает важными связывающими свойствами и способна принимать участие в сильных (электростатических) связывающих взаимодействиях с катионами металлов и аминов. Фосфор легко образует ряд ковалентных соединений – от простых эфиров (триметил- или триэтилфосфат) до сложных макромолекул дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот, которые являются составной частью биологических регуляторных молекул. Фосфор является обязательным компонентом ряда коферментных систем, катализирующих ряд реакций азотного обмена. Важными органическими фосфорсодержащими соединениями в растениях являются нуклеиновые кислоты, играющие большую роль в наследственной функции организма. Это сложные высокомолекулярные вещества, состоящие из азотистых оснований, молекулы углеводов (рибозы или дезоксирибозы) и фосфорной кислоты. В растениях на долю нуклеиновых кислот приходится от 0,1 до 1 %, а на долю фосфора в нуклеиновых кислотах (в пересчете на Р2О5) около 20 %. Высоким содержанием нуклеиновых кислот отличаются зародыши семян, пыльца, кончики корней. Нуклеиновые кислоты участвуют в синтезе белков, процессах роста и размножения, передаче наследственных свойств, влияют на процессы дыхания, образования ряда ферментов. РНК играет роль «матрицы», на которую последовательно укладываются молекулы аминокислот, образующие специфический для данного организма белок. ДНК, входящая в состав хромосомного аппарата ядра, ответственна за передачу наследственных свойств и накопленной биологической информации, благодаря которой в определенном порядке и последовательности соединяются аминокислоты, образующие различные белки. Огромную роль в обмене веществ играют макроэргические соединения, содержащие богатые энергией связи. Известно множество макроэргических соединений и в большинство из них входит фосфор. Среди них особое место занимает аденозинтрифосфорная кислота (АТФ) – своеобразный хранитель и носитель энергии во многих синтетических процессах. При гидролизе АТФ, входящей в состав РНК, высвобождается около 55 кДж/моль, в то время как гидролиз обычных связей дает 8–12 кДж/моль. Макроэргические фосфатные связи принимают участие в процессах фотосинтеза, дыхания, биосинтеза белков, жиров, крахмала, сахарозы, ряда аминокислот, других соединений. Соединения фосфора с белковыми веществами – фосфоропротеиды – катализируют течение биохимических реакций. Сахарофосфаты-эфиры – производные простых сахаров и фосфорной кислоты – вследствие своей мобильности играют большую роль в процессах фотосинтеза, дыхания. Их содержание изменяется в зависимости от возраста растений, условий питания и других факторов от 0,1 до 1% от сухой массы. При участии фосфора происходит углеводный обмен в растениях. Превращение углеводов начинается с присоединения фосфорной кислоты к молекулам углеводов или с ее отщепления, т.е. с процессов фосфорилирования и де- фосфорилирования. Самый распространенный фосфорный эфир – глюкозо-6-фосфат. Он синтезируется в растениях путем переноса фосфорной кислоты с АТФ на глюкозу. Одновременно при этом образуется АДФ. Фосфорилированные сахара играют важную роль в процессах дыхания и гликолиза (окисления углеводов до пировиноградной кислоты). Фосфорилирование происходит уже в самом начале фотосинтеза, как только на листья попадает свет. Принципиальное значение имеет перевод световой энергии в химическую путем образования АТФ в световой реакции фотосинтеза. Фосфорная кислота принимает активное участие в биосинтезе сахарозы, в ферментативных превращениях форм углеводов, передвижений углеводов (в клубни картофеля, корни сахарной свеклы и т.д.). В связи с этим фосфорные удобрения положительно влияют на накопление в растениях крахмала, сахаров, других углеводов. Фосфор также благоприятствует накоплению в плодах красящих и ароматических веществ, улучшает их лежкость. Важную биологическую роль выполняют в растениях фосфатиды, или фосфолипиды. Это сложные эфиры глицерина, жирных кислот и фосфорной кислоты. Они входят в состав фосфолипидных мембран, которые регулируют проницаемость клеток органелл и плазмолеммы для различных веществ. Более богаты фосфатидами семена бобовых и масличных культур. Представителем группы жироподобных веществ фосфатидов является лецитин – производное диглицеридфосфорной кислоты. Лецитин встречается в цитоплазме всех деятельных клеток, но накапливается преимущественно в семенах. Фитин – производная циклического соединения шестиатомного спирта инозита – является кальциевомагниевой солью инозитфосфорной кислоты. Он содержится во всех частях и тканях растений, но откладывается главным образом в семенах и используется как источник фосфора при прорастании семени. По данным Т. Н. Кулаковской, в зерне пшеницы и сене клевера преобладают органические соединения фосфора, прежде всего фитин (табл. 6.1). 6.1. Содержание фосфорнокислых соединений в пшенице и клевере, % Р2О5 к сухому веществу
Особенно чувствительны растения к недостатку фосфора в начальных фазах роста и развития, когда корневая система еще недостаточно развилась. Большие запасы фосфора в семенах способствуют хорошему росту растений в первый период жизни за счет распада веществ семени и передвижению продуктов распада в растущие части. Оптимальное фосфорное питание способствует развитию корневой системы: корни глубже проникают в почву и больше ветвятся, благодаря чему улучшается снабжение растений влагой и питательными веществами. Фосфор способствует более экономному расходованию влаги, что особенно важно в засушливые периоды. Хорошее фосфорное питание улучшает перезимовку озимых культур, благодаря достаточному накоплению сахаров в узлах кущения с осени. Отрицательные последствия недостатка фосфора в ранний период не могут быть исправлены впоследствии даже при обильном фосфорном питании. Растения остаются низкорослыми, замедляется их развитие, они позднее цветут и созревают. Это связано с тем, что клетки не могут делиться, если фосфора или других элементов недостаточно для образования дополнительного ядра. Таким образом, в отличие от растений, испытывающих недостаток азота и имеющих поэтому «сокращенный» цикл развития, растения при недостатке фосфора «физиологически более молоды». Во время образования и, особенно, созревания репродуктивных органов у всех культур происходит передвижение фосфора из вегетативных органов в репродуктивные. Достаточное снабжение растений фосфором в период формирования репродуктивных органов ускоряет образование и созревание последних. Так, при достаточном обеспечении фосфором на протяжении вегетационного периода зерновые созревали на 5–6 дней раньше, чем испытывавшие его дефицит. При нормальном фосфорном питании изменяется структура урожая в сторону увеличения наиболее ценной репродуктивной части: у зерновых культур возрастает доля зерна в массе биологического урожая, у корнеплодов – корнеплодов и т.д. Большую роль в жизни растений играют минеральные соединения фосфора: кальциевые, магниевые, калийные, аммониевые и другие соли ортофосфорной кислоты. Минеральный фосфор является не только резервом для синтеза органических фосфорсодержащих соединений, но и повышает буферность клеточного сока, поддерживает тургор и другие жизненно важные процессы в клетке. Усиливая способность растительных клеток удерживать воду, фосфор тем самым повышает устойчивость растений к засухам и низким температурам. Уровень снабжения растения фосфором зависит не только от его содержания в почве, но и от обеспеченности почвы другими элементами. Так, при недостатке цинка снижается поступление и использование растениями фосфора; высокое содержание в почве меди, наоборот, снижает потребность растений в фосфоре. Фосфор ослабляет вредное влияние на растения подвижного алюминия на кислых почвах. Подвижные формы алюминия отрицательно влияют на обмен веществ, подавляют образование фосфатидов, тормозят превращение моносахаридов в сахарозу и более сложные органические соединения, задерживают образование белков. Фосфор, связывая подвижный алюминий почвы, фиксирует его в корневой системе, тем самым улучшается углеводный и азотистый обмен в растениях. Фосфор легко передвигается внутри растения и из более старых листьев и тканей может поступать к зонам роста, т.е. реутилизироваться (использоваться повторно). Внешними признаками недостатка фосфора являются скручивание краев листьев, их более темная, грязно-зеленая окраска. Это связано с тем, что рост листьев при недостатке хлорофилла задерживается сильнее, чем образование хлорофилла. Однако при избытке азота растения также имеют темно-зеленую окраску из-за большого содержания хлорофилла. При недостатке фосфора, кроме того, вследствие образования антоциана нередко появляются красноватые и фиолетовые тона, прежде всего на основных стеблях, влагалищах листьев и черенках. Сильнее признаки недостатка фосфора проявляются у старых и нижних листьев. Избыток фосфора также неблагоприятен для растений. В этом случае они содержат много фосфора в минеральной форме, особенно в вегетативных органах, преждевременно созревают и не успевают синтезировать хороший урожай. При избытке фосфора ухудшается питание цинком, что приводит к заболеванию плодовых культур розеточностью. Существует тесная связь между азотным и фосфорным питанием. Фосфор выступает в роли спутника азота и белковых соединений, в растениях его содержится в два-три раза меньше, чем азота. При недостатке фосфора замедляется синтез белков, накапливается больше нитратов. Поэтому дозы азотных и фосфорных удобрений должны быть сбалансированными, особенно при внесении высоких доз азота. Большое значение имеет фосфор в жизни человека и для сельскохозяйственных животных. Он входит в состав костной ткани и незаменим в процессах, от которых зависят основные жизненные функции (обмен веществ, размножение и т.д.). При недостатке фосфора у человека и животных развивается остеопороз и другие заболевания костей. Суточная потребность человека в фосфоре – 1–1,5 г. Существует достоверная связь между содержанием фосфора в кормах и продуктивностью животных. Причем введение в рацион скота кормовых фосфатов не может полностью компенсировать дефицит фосфора. Он должен в достатке содержаться в натуральных кормах, а значит, и в почве под посевами кормовых культур. Оптимальное содержание фосфора в кормах – 0,35–0,5 % сухого вещества. 6.2. Источники фосфорного питания растений Основной источник фосфора для растений в природе – соли ортофосфорной кислоты. Из солей полифосфорных кислот фосфор может быть использован после их гидролиза. Будучи трехосновной, ортофосфорная кислота может диссоциироваться на три аниона: Н2РО4-, НРО42- и РО43-. Преобладание в почвенном растворе той или иной модификации иона ортофосфорной кислоты зависит от степени кислотности почвы. При слабокислой или близкой к нейтральной реакции присутствует главным образом анион Н2РО4-, меньше НРО42-, при слабощелочной (рН выше 7) доминирует НРО42-. Ион РО43-, как и молекула Н3РО4, не имеет существенного значения для питания растений, так как ион существует в сильнощелочной среде, а Н3РО4 – в сильнокислой. Доступность растениям различных солей ортофосфорной кислоты зависит от степени их растворимости. Хорошо растворимы в воде соли фосфорной кислоты с одновалентными катионами калия, натрия, аммония Са(Н2РО4)2 и Мg(H2PO4)2. Двузамещенные соли кальция и магния СаНРО4 и MgHPO4 в воде нерастворимы, но растворяются в слабых кислотах, в том числе органических. Благодаря кислой реакции и корневым выделениям они также являются важным источником фосфорного питания растения. Фосфор труднорастворимых трехзамещенных фосфатов кальция и более сложных по составу и еще менее растворимых фосфатов недоступен для большинства растений. Однако существует группа культур, способных усваивать его из таких труднорастворимых соединений. Это люпин, гречиха, горчица, а также горох, донник, эспарцет и конопля, которые, хотя и в меньшей степени, чем первые три, но все же усваивают фосфор из фосфоритов. Своей способности усваивать фосфор из труднорастворимых фосфатов эти культуры обязаны прежде всего кислым корневым выделениям. Исследованиями Н. М. Глазуновой с использованием анионитов показано, что находящиеся в почве обменно-адсорбированные фосфат ионы активно участвуют в питании растений. В ходе ионного обмена фосфат-ионы могут переходить в почвенный раствор и составлять часть запаса доступного фосфора почвы. Несмотря на то, что адсорбированные фосфат-ионы удерживаются положительно заряженными участками поглощающего комплекса более прочно, чем катионы, они доступнее, чем фосфор апатита, стренгита, варисцита и других минералов. Французский ученый А. Демолон пришел к выводу, что оптимальная для растений концентрация Р2О5 в почвенном растворе – 1,2 мг/л. Однако обычно она значительно ниже (0,05–1 мг/л), и поэтому необходимо внесение фосфорных удобрений. М. К. Домонтович установил, что минимальная концентрация Р2О5 для кукурузы, пшеницы, овса, гороха, горчицы и гречихи, при которой растения могли его усваивать, составляла 0,01–0,03 мг/л. По данным немецкого ученого В. Матцеля, корни могут поглощать фосфор, находящийся на расстоянии не более чем 2 мм от них, и даже в период максимального развития корневой системы растения используют фосфор примерно только из четверти всего объема пахотного слоя. |