13_Лекция. Гидрокаталитические процессы переработки нефтяного сырья
Скачать 75.54 Kb.
|
1 2 Лекция 13 ГИДРОКАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТЯНОГО СЫРЬЯ Рассматриваемые вопросы: 1. Гидрокрекинг нефтяного сырья. 2. Гидродеароматизация керосиновых фракций. Гидрокрекинг нефтяного сырья В современной нефтепереработке освоенны типы промышленных процессов гидрокрекинга: 1) гидрокрекинг бензиновых фракций с целью получения легких изоалкановых углеводородов, представляющих собой ценное сырье для производства синтетического каучука, высокооктановых добавок к автомобильным бензинам; 2) селективный гидрокрекинг бензинов с целью повышения ОЧ, реактивных топлив и дизельных топлив с целью понижения их температуры застывания; 3) гидродеароматизация прямогонных керосиновых фракций и газойлей каталитического крекинга с целью снижения содержанияя в них аренов. 4) лёгкий гидрокрекинг вакуумного газойля с целью облагораживания сырья каталитического крекинга с одновременным получением дизельных фракций; 5) глубокий гидрокрекинг вакуумных дистиллятов с целью получения моторных топлив и основы высокоиндексных масел; 6) гидрокрекинг нефтяных остатков с целью получения моторных топлив, смазочных масел, малосернистых котельных топлив и сырья для каталитического крекинга. Особенности химизма и механизма реакций гидрокрекинга Гидрокрекинг можно рассматривать как совмещенный процесс, в котором одновременно осуществляются реакции как гидрогенолиза (т. е. разрыв связей C-S, C-N и С-0) и дегидрования-гидрировая, так и крекинга (т. е. разрыв связи С-С). Но без коксообразования, с получением продуктов более низкомолекулярных по сравнению с исходным сырьем, очищенных от гетероатомов, не содержащих алкенов, но менее ароматизированных, чем при каталитическом крекенге. Результаты гидрокрекинга (материальный баланс и качество продуктов) нефтяного сырья в сильной степени определяются свойствами катализатоpa: его гидрирующей и кислотной активностями и их соотношением. В зависимости от целевого назначения могут применяться катализаторы с преобладанием либо гидрирующей, либо крекирующей активности, в результате будут получаться продукты, соответствующие лёгкому гидрокрекингу или глубокому гидрокрекингу. В основе каталитических процессов гидрокрекинга нефтяного сырья лежат реакции: - гидрогенолизаза гетероорганических соединений серы, азота, кислорода и гидрирования аренов и алкенов (т. е. все те реакции, которые протекают при гидроочистки); - крекинга алкановых и циклановых углеводородов, деалкелирования циклических структур и изомеризации образующихся низкомолекулярных алканов. Реакции ароматизации и поликонденсации до кокса, протекающие при каталитическом крекинге, в процессах гидрокрекинга, проводимых при высоком давлении водорода и пониженных температурах, сильно заторможены из-за термодинамических ограничений и гидрирования коксогенов посредством водорода. Гидрогенолиз серуорганических соединений, азотоорганических соединений и кислородоорганических соединений протекает по механизму так же, как в процессах гидроочистки, и завершается образованием сероводорода, аммиака, воды и соответствующих углеводородов. Гидрирование аренов осуществляется последовательным насыщением ароматических колец с возможным сопутствующим разрывом образующихся нафтеновых колец и деалкелированием. Гидрокрекинг высокомолекулярных алканов на катализатоpax с высокой кислотной активностью осуществляется по карбоний-ионному механизму преимущественно с разрывом в средней части с наименьшей энергией связи С-С. Как и при каталитическом крекинге, вначале на металлических центрах катализатора происходит дегидрирование алканов с образованием алкенов. Затем алкены на кислотных центрах легко превращаются в карбкатионы и инициируют цепной карбоний-ионный процесс. Скорость гидрокрекинга при этом также возрастает с увеличением молекулярной массы алканов. Алканы с третичными углеродными атомами подвергаются крекингу со значительно большей скоростью, чем н-алканы. Так как распад карбоний-ионов с отщеплением фрагментов, содержащих менее 3 атомов углерода, сильно эндотермичен, при гидрокрекинге почти не образуются метан и этан и высок выход изобутана и изопентанов (больше равновесного). На катализатоpax с высокой гидрирующей и умеренной кислотной активностями происходит интенсивное насыщение карбоний-ионов, в результате образуются алканы с большим числом атомов углерода в молекуле, но менее изомеризованные, чем на катализатоpax с высокой кислотностью. Основные отличия гидрокрекинга от каталитического крекинга заключаются в том, что общая конверсия алканов выше в первом процессе, чем во втором. Это обусловлено легкостью образования алкенов на гидро-дегид-рирующих центрах катализаторов гидрокрекинга. В результате наиболее медленная и энергоемкая стадия цепного механизма - инициирование цепи при гидрокрекинге протекает быстрее, чем при каталитическом крекинге без водорода. Катализаторы гидрокрекинга практически не закоксовываются, т. к. алкены подвергаются быстрому гидрированию и не успевают вступать в дальнейшие превращения с образованием продуктов полимеризации и уплотнения. Циклоалканы с длинными алкильными цепями при гидрокрекенге на катализаторах с высокой кислотной активностью подвергаются изомеризации и распаду цепей, как алканы. Расщепление кольца происходит в небольшой степени. Интенсивно протекают реакции изомеризации 6-членных в 5-членные циклоалканы. Бицикличсские циклоалканы превращаются преимущественно в моноциклические алканы с высоким выходом производных циклопентана. На катализаторах с низкой кислотной активностью протекает в основном гидрогенолиз - расщепление кольца с последующим насыщением образовавшегося углеводорода. Катализаторы Ассортимент современных катализаторов гидрокрекинга достаточно обширен, что объясняется разнообразием назначений процесса. Обычно они состоят из 3 компонентов: кислотного, дегидро-гидрирующего и связующего, обеспечивающего механическую прочность и пористую структуру. В качестве кислотного компонента, выполняющего крекирующую и изомеризующую функции, используют твердые кислоты, входящие в состав катализаторов крекинга: цеолиты, алюмосиликаты и оксид алюминия. Для усиления кислотности в катализатор иногда вводят галоген. Гидрирующим компонентом обычно служат те металлы, которые входят в состав катализаторов гидроочистки: металлы VIII (Ni, Co, иногда Pt или Pd) и VI групп (Мо или W). Для активирования катализаторов гидрокрекинга используют также разнообразные промоторы: рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняет кислотный компонент (оксид алюминия, алюмосиликаты), а также оксиды кремния, титана, циркония, магний- и цирконийсиликаты. Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с - и р-проводимостями): они активны как в реакциях гидрирования-дегидрирования (гомолетических), так и в гетеролитических реакциях гидрогенолиза гетероорганических соединений нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод - углеродных связей. Поэтому для осуществления реакций крекинга углеводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются, по существу, минимум трифункциональными, а селектиного гидрокрекинга - в тетрафункциональными, если учесть их молекулярно-ситовые свойства. Если кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмосиликате - крупнопористом носителе - в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводородов сырья, в то время как на цеолите - реакции последующего, более глубокого, крекинга- с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отнести к полифункциональным. Значительно лучшие результаты гидрокрекинга достигаются при использовании катализаторов с высокой кислотной и оптимальной гидрирующей активностями, достоинства которых применительно к промышленным видам сырья заключаются в следующем: 1. Низок выход алканов С1 – С3 и особенно метана и этана. 2. Бутановая фракция содержит 60 - 80 % изобутана. 3. Пентановая и гексановая фракции на 90 – 96 % состоят из изомеров. Циклоалканы С5 содержат около 90 % метил-циклопентана. В результате легкий бензин (до 85 0С), содержат 80 – 90 % алканов, до 5 % бензола и 10 – 20 % цикланов, имеет достаточно высокие антидетонационные характеристики: ОЧИМ = 85 - 88. 4. Бензины С7 и выше содержат 40 – 50 % циклоалканов, 0 – 20 % аренов и являются исключительно качественным сырьем каталитического риформинга. 5. Керосиновые фракции ввиду высокого содержания изоалканов и низкого содержания бициклических аренов являются высококачественным топливом для реактивных двигателей. Дизельные фракции содержат мало аренов и преимущественно состоят из производных циклопентана и циклогексана, имеют высокие цетановые числа (ЦЧ) и относительно низкие температуры застывания. Большое значение уделяется в настоящее время катализаторам на цео-литной основе. Они обладают высокой гидрокрекирующей активностью и хорошей избирательностью. Кроме того, они позволяют проводить процесс иногда без предварительной очистки сырья от азотосодержащих соединений. Содержание в сырье до 0,2 % азота практически не влияет на их активность. Повышенная активность катализаторов гидрокрекинга на основе цеолитов обуславливается более высокой концентрацией активных кислотных центров в кристаллической структуре по сравнению с аморфными алюмосиликатными компонентами. В случае переработки тяжелого сырья наибольшую опасность для дезактивации катализаторов гидрокрекинга представляют кроме азотистых оснований асфальтены и прежде всего содержащиеся в них металлы, такие как Ni и V. Поэтому гидрокрекинг сырья, содержащий значительное количество герероорганические соединения и металлорганические соединения проводят в 2 и более ступени. На первой ступени в основном проходит гидроочистка и неглубокий гидрокрекинг полициклических аренов (а также деметаллизация). Катализаторы этой ступени идентичны катализаторам гидроочистки. На второй ступени облагороженное сырье перерабатывается на катализаторе с высокой кислотной и умеренной гидрирующей активностью. При гидрокрекинге нефтяных остатков исходное сырье целесообразно подвергнуть предварительной деметаллизации и гидроочистке на серо- и азо-тостойких кататализатоpax с высокой металлоемкостью и достаточно высокой гидрирующей, но низкой крекирующей активностью. В процессе селективного гидрокрекинга в качестве катализаторов применяют модифицированные цеолиты (морденит, эрионит и др.) со специфическим молекулярно-ситовым действием: поры цеолитов доступны только для молекул алканов. Дегидро-гидрирующие функции в таких катализатоpax выполняют те же металлы и соединения, что и в процессах гидроочистки. Основные параметры процессов гидрокрекинга Температура. Оптимальный интервал температур для процессов гидрокрекинга – 360 - 440 0С с постепенным повышением от нижней границы к верхней по мере падения активности катализатоpa. При более низкой температуре реакции крекинга протекают с малой скоростью, но благоприятен химический состав продуктов: большее содержание циклоалканов и соотношение изоалкан : н-алкан. Превышение температуры ограничивается термодинамическими факторами (реакций гидрирования полициклических аренов) и усилением роли реакций газо- и коксообразования. Тепловой эффект гидрокрекинга определяется соотношением реакций гидрирования и расщепления. Обычно отрицательный тепловой эффект расщепления перекрывается положительным тепловым эффектом гидрирования. Экзотермический тепловой эффект суммарного процесса тем больше, чем выше глубина гидрокрекинга. Поэтому при его аппаратурном оформлении обычно предусматривается возможность отвода избыточного тепла из зоны реакции во избежание перегрева реакционной смеси. При использовании реакторов со стационарным катализатором, последний насыпают несколькими слоями так, чтобы между ними можно было осуществить охлаждение потока (обычно частью холодного ВСГ). Давление. Установлено, что лимитирующей стадией суммарного процесса гидрокрекинга является гидрирование ненасыщенных соединений сырья, особенно полициклических аренов. Поэтому катализаторы глубокого гидрокрекинга должны обладать кроме высокой кислотной активности и достаточной гидрирующей активностью. На скорость реакций гидрирования существенное влияние оказывает фазовое состояние (Г + Ж + Т) реакционной смеси, которое является функцией от давления, температуры, концентрации водорода, глубины конверсии и фракционного состава исходного сырья. На катализаторax гидрирующего типа с повышением давления возрастают скорость реакций и глубина гидрокрекинга. Минимально приемлемое давление тем выше, чем менее активен катализатор и чем тяжелее сырье. На катализатоpax с высокой кислотной и низкой гидрирующей активностью скорость гидрокрекинга сырья зависит от давления более сложно. При невысоких давлениях концентрация водорода на поверхности катализатора мала и часть его кислотнных центров не участвует в ионном цикле в результате дезактивации коксом. С другой стороны, при чрезмерном повышении давления возрастает концентрация водорода не только на металических (гидрирующих), но и кислотных центрах катализатора вследствие спилловера водорода, в результате тормозится стадия инициирования карбкатионного цикла через образование олефинов. Наложение этих двух факторов может привести к максимальной скорости реакций как функции давления. Большинство промышленных установок гидрокрекинга работает под давлением 15 - 17 МПа. Гидрокрекинг прямогонных лёгких газойлей с низким содержанием азота можно проводить при давлении около 7 МПа. Объемная скорость подачи сырья при гидрокрекинге из-за предпочтительности проведения процесса при минимальных температурах обычно низка (0,2 - 0,5 ч-1). При ведении процесса в режиме мягкого гидрокрекинга она выше (до 1 ч-1). Для повышения конверсии сырья используют рециркуляцию фракций, выкипающих выше целевого продукта. Кратность циркуляции ВСГ по отношению к перерабатываемому сырью колеблется в зависимости от назначения процесса в пределах 800 - 2000 м3/м3. Расход водорода зависит от назначения процесса, используемого сырья, катализатоpa, режима процесса, глубины гидрокрекинга и других факторов. Чем легче продукты гидрокрекинга и тяжелее сырье, тем больше расход водорода и тем выше должно быть соотношение водород: сырье. Гидрокрекинг высоковязкого масляного сырья В последние годы все большее применение находят процессы гидрокрекинга высоковязких масляных дистиллятов и деасфальтизатов с целью получения высокоиндексных базовых масел. Глубокое гидрирование масляного сырья позволяет повысить индекс вязкости от 50 - 75 до 95 - 130 пунктов, снизить содержание серы с 2,0 до 0,1 % и ниже, почти на порядок уменьшить коксуемость и снизить температуру застывания. Подбирая технологический режим и катализатор гидрокрекинга, можно получать масла с высоким индексом вязкости практически из любых нефтей. Масла гидрокрекинга представляют собой высококачественную основу товарных многофункциональных (всесезонных) моторных масел, а также ряда энергетических (турбинных) и индустриальных (трансмиссионных) масел. В маслах гидрокрекинга нет естественных ингибиторов окисления, поскольку в жестких условиях процесса они подвергаются химическим превращениям. Поэтому в масла гидрокрекинга вводят антиокислительные присадки. Выход и качество масел зависят от условий гидрокрекинга, типа катализатоpa и природы сырья. Выход гидрокрекированного масла обычно не превышает 70 % масс., а масла с индексом вязкости выше 110 составляют 40 - 60 % масс. Для увеличения выхода целевых продуктов гидрокрекинга часто осуществляют в две стадии. На первой стадии (при температуре 420 – 440 0С и давлении 20 - 25 МПа) на АНМ катализаторе проводят гидроочистку и гидрирование полициклических соединений. Во второй стадии (при температуре 320 – 350 0C и давлении 7 - 10 МПа) на бифункциональных катализатоpax осуществляют гидроизомеризация н-алканов. Так как изоалканы застывают при значительно более низкой температуре, чем н-алканы, при гидроизомеризации понижается температура застывания масляных фракций и исключается операция депарафинизации растворителями. Гидрокрекинг остаточного сырья Тяжёлая высокомолекулярная часть нефти, составляющая 25 – 30 % тефтяного остатка, является основным резервом для эффективного решения проблемы углубления её переработки. До настоящего времени значительная доля нефтяных остатков (гудронов, асфальтов) использовалась часто без гидрооблагораживания в качестве котельных топлив, сжигаемых в топках тепловых электростанций, котельных и бойлерных установках. В 60-е годы появились процессы по получению котельных топлив с пониженным содержанием серы путём гидрообессеривания вакуумных дистиллятов и последующим смешением их с гудроном. В последующем, когда нормы на содержание серы ужесточились, такая технология уже не могла обеспечить получение котельных топлив с содержанием серы менее 1 %. Появилась необходимость в глубоком облагораживании непосредственно тяжёлых нефтяных остатков. При разработке гидрокаталитических процессов облагораживания и последующей глубокой переработке нефтяных остатков возникли трудности, связанные с проблемой необратимого отравления катализаторов процессов металлами, содержащимися в сырье. Появилось множество вариантов технологии промышленных процессов гидрооблагораживания нефтяных остатков в зависимости от содержания в них металлов, прежде всего ванадия и никеля: одно- и многоступенчатые в реакторах со стационарным или движущемся слоем катализатора, с предварительной деметаллизацией различными способами или без специальной подготовки. Последующая глубокая переработка гидрооблагороженных нефтяных остатков не является серьёзной технологической проблемой. Если нефтяные остатки используются как малосернистое котельное топливо, то их можно перерабатывать или гидрокрекингом, или на установках каталитического крекинга. Причём гидрокрекинг может быть комбинирован с процессами деметаллизации и гидрообессеривания или совмещён с ними путём дооборудования дополнительным хвостовым реактором гидрокрекинга – процесса «Хайвал». Рисунок 1 – Схема привязки реактора гидрокрекинга к реакторному блоку процесса «Хайвал» 1 2 |