Главная страница
Навигация по странице:

  • Миелоидная

  • ткань

  • Р ис. 2.

  • Черты Поперечно-полосатые мышцы Гладкие мышцы Сердечная мышца

  • Миофиламенты (миофибриллы)

  • Поперечная исчерченность

  • 02 Гистология. Гистология животных Эпителиальная ткань животных 3


    Скачать 2.81 Mb.
    НазваниеГистология животных Эпителиальная ткань животных 3
    Дата21.12.2022
    Размер2.81 Mb.
    Формат файлаdoc
    Имя файла02 Гистология.doc
    ТипДокументы
    #857082
    страница2 из 3
    1   2   3

    Гематопоэтические ткани

    Известны два типа гематопоэтической ткани - миелоидная и лимфоидная. В миелоидной ткани, или костном мозге, образуются эритроциты и гранулоциты, а в лимфоидной - лимфоциты и моноциты. Гематопоэтические ткани состоят из свободных клеток, лежащих в строме, образованной рыхлыми ретикулиновыми волокнами, которые нередко назы­вают ретикулярной соединительной тканью.
    Миелоиднаяткань(костныймозг): строма образована очень рыхлой ретикулярной соединительной тканью, в которой имеются обшир­ные межклеточные пространства. Строму пересе­кают многочисленные обширные тонкостенные кро­веносные синусоиды, через которые зрелые кровяные клетки попадают в кровоток. Синусоиды выст­ланы фагоцитарными клетками, составляющими часть ретикулоэндотелиальной системы организма. Полагают, что все форменные элементы крови происходят из родоначальных клеток, называемых гемоцитобластами, которые дифференцируются в эритробласты - предшественники эритроцитов, миелоциты - предшественники гранулоцитов, лимфобласты предшественники лимфоцитов, монобласты - предшественники моноцитов и мегакариоциты, из которых образуются тромбоциты (кровяные пластинки).

    Лимфоиднаяткань: эта ткань ответственна за дифференцировку лимфо­цитов. Известны три типа лимфоидной ткани: рыхлая лимфоидная ткань, в которой строма, обра­зуемая ретикулярной соединительной тканью, пре­обладает над свободными клетками; плотная лим­фоидная ткань, содержащая гораздо больше свобод­ных клеток, погруженных в строму; узелковая лимфоидная ткань, содержащая плотные скопления свободных клеток.

    Свободные клетки - это главным образом лимфо­циты, различающиеся по размерам и функциям. Среди них встречаются также плазматические клет­ки, дифференцировавшиеся из лимфоцитов, а иног­да моноциты и эозинофилы. Некоторые из этих клеток являются фагоцитами.
    (к оглавлению)
    Нервная ткань.

    Н ервная ткань состоит из нервных клеток — нейронов (10%) и вспомогательных нейроглиальных клеток (90%), или клеток-спут­ниц.

    Нейрон — элементарная структурно-функциональная еди­ница нервной ткани. Основные функции нейрона: генерация, проведение и передача нервного импульса, который является носителем информации в нервной системе. Нейрон состоит из тела и отростков, причем эти отростки дифференцированы по строению и функции (рис. 1).
    Рис. 1. Схема внеш­него и внутреннего стро­ения нейрона: 1 — дендриты и их отростки; 2 — комплекс Гольджи; 3 — микротрубочки; 4 — ак­сон; 5 — коллатерали аксона; 6 — ядро; 7 — гранулярная эндоплазматическая сеть; 8 — мито­хондрии
    Длина отростков у раз­личных нейронов колеблется от нескольких микрометров до 1—1,5 м. Длинный отросток (нервное волокно) у большинства нейронов имеет миелиновую оболочку, состоящую из особого жироподобного вещества — миелина. Она образуется одним из типов нейроглиальных клеток — олигодендроцитами.

    По наличию или отсутствию миелиновой оболочки все во­локна делятся соответственно на мякотные (миелинизированные) и безмякотные (немиелинизированные). Последние погружены в тело специальной нейроглиальной клетки — нейролеммоцита (рис. 2).
    Р ис. 2. Оболочки нервных волокон: а — миелиновая; б — ее образование (процесс наслоения показан стрелкой); в— оболочка безмякотного волокна; 1 — аксон; 2— ядро глиальной клетки; 3 — слои оболочки; 4 — перехват Ранвье; 5 волокно погружено в тело нейролеммоцита
    Миелиновая оболочка имеет белый цвет, что позволило раз­делить вещество нервной системы на серое и белое. Тела нейро­нов и их короткие отростки образуют серое вещество мозга, а волокна — белое вещество. Миелиновая оболочка способст­вует изоляции нервного волокна. Нервный импульс проводит­ся по такому волокну быстрее, чем по лишенному миелина. Миелин покрывает не все волокно: примерно на расстоянии в 1 мм в нем имеются промежутки — перехваты Ранвье, участ­вующие в быстром проведении нервного импульса.

    Функциональное различие отростков нейронов связано с проведением нервного импульса. Отросток, по которому им­пульс идет от тела нейрона, всегда один и называется аксоном. Аксон практически не меняет диаметр на всем своем протяже­нии. У большинства нервных клеток это длинный отросток. Исключением являются нейроны чувствительных спинномоз­говых и черепных ганглиев, у которых аксон короче дендрита. Аксон на конце может ветвиться. В некоторых местах (у миелинизированных аксонов — в перехватах Ранвье) от аксонов могут перпендикулярно отходить тонкие ответвления — коллатерали. Отросток нейрона, по которому импульс идет к те­лу клетки, — дендрит. Нейрон может иметь один или не­сколько дендритов. Дендриты отходят от тела клетки посте­пенно и ветвятся под острым углом.

    Скопления нервных волокон в ЦНС называются тракта­ми, или путями. Они осуществляют проводящую функцию в различных отделах головного и спинного мозга и образуют там белое вещество. В периферической нервной системе от­дельные нервные волокна собираются в пучки, окруженные соединительной тканью, в которой проходят также кровенос­ные и лимфатические сосуды. Такие пучки образуют нервы — скопления длинных отростков нейронов, покрытых общей оболочкой.

    Если информация по нерву идет от периферических чувст­вительных образований — рецепторов — в головной или спин­ной мозг, то такие нервы называются чувствительными, центростремительными или афферентными. Чувствитель­ные нервы — нервы, состоящие из дендритов чувствитель­ных нейронов, передающие возбуждение от органов чувств к ЦНС. Если информация по нерву идет из ЦНС к исполни­тельным органам (мышцам или железам), нерв называется центробежным* двигательным или эфферентным. Двига­тельные нервы — нервы, образованные аксонами двигатель­ных нейронов, проводящие нервные импульсы от центра к рабочим органам (мышцам или железам). В смешанных не­рвах проходят как чувствительные, так и двигательные во­локна.

    В том случае, когда нервные волокна подходят к како­му-либо органу, обеспечивая его связь с ЦНС, принято гово­рить об иннервации данного органа волокном или нервом.

    Тела нейронов с короткими отростками по-разному распо­ложены относительно друг друга. Иногда они образуют доста­точно плотные скопления, которые называются нервными ганглиями, или узлами (если они находятся за пределами ЦНС, т. е. в периферической нервной системе), и ядрами (если они находятся в ЦНС). Нейроны могут образовывать кору — в этом случае они расположены слоями, причем в каждом слое находятся нейроны, сходные по форме и выполняющие определенную функцию (кора мозжечка, кора больших полу­шарий). Кроме того, в некоторых участках нервной системы (ретикулярная формация) нейроны расположены диффузно, не образуя плотных скоплений и представляя собой сетчатую структуру, пронизанную волокнами белого вещества.

    Передача сигнала от клетки к клетке осуществляется в особых образованиях — синапсах. Это специализированная структура, обеспечивающая передачу нервного импульса с нервного волокна на какую-либо клетку (нервную, мышеч­ную). Передача осуществляется с помощью особых веществ — медиаторов.

    Нейроны разнообразны по форме, числу отростков, вели­чине. Тела самых крупных нейронов достигают в диаметре 100—120 мкм (гигантские пирамиды Беца в коре больших по­лушарий), самые мелкие — 4—5 мкм (зернистые клетки коры мозжечка). По количеству отростков нейроны делятся на мультиполярные, биполярные, униполярные и псевдоунипо­лярные. Мультиполярные нейроны имеют один аксон и мно­го дендритов, это большинство нейронов нервной системы. Би­полярные имеют один аксон и один дендрит, униполярные — только аксон; они характерны для анализаторных систем. Из тела псевдоуниполярного нейрона выходит один отросток, ко­торый сразу после выхода делится на два, один из которых выполняет функцию дендрита, а другой аксона. Такие нейро­ны находятся в чувствительных ганглиях (рис. 3).

    (к оглавлению)



    Рис. 3. Типы нейронов: а — псевдоуниполярный ней­рон; б — биполярный нейрон; в — мотонейрон спинного мозга; г — пирамидный нейрон коры больших полушарий; д — клетка Пуркинье мозжечка; 2 — дендрит; 2 — тело нейрона; 3 — аксон; 4 — коллатераль аксона
    Функционально нейроны подразделяются на чувстви­тельные, вставочные (релей­ные и интернейроны) и дви­гательные. Чувствительные нейроны — нервные клетки, воспринимающие раздраже­ния из внешней или внутрен­ней среды организма. Двига­тельные нейроны — моторные нейроны, иннервирующие мы­шечные волокна. Кроме того, некоторые нейроны иннервируют железы. Такие нейроны вместе с двигательными назы­вают исполнительными.

    Ч асть вставочных нейро­нов (релейные, или переключа­тельные, клетки) обеспечивает связь между чувствительными и двигательными нейронами. Релейные клетки, как прави­ло, весьма крупные, с длин­ным аксоном (тип Гольджи I). Другая часть вставочных ней­ронов имеет небольшой раз­мер и относительно короткие аксоны (интернейроны, или тип Гольджи II). Их функция связана с управлением состоя­ния релейных клеток.

    Все перечисленные нейро­ны формируют совокупнос­ти — нервные цепи и сети, проводящие, обрабатывающие и запоминающие информацию (рис. 4).
    Рис. 4. Схема нейросети: 1 — чувствительный нейрон; 2 — релейный нейрон; 3 — двигательный нейрон; 4 — интернейро­ны типа Гольджи II; 5 — рецепторное окончание чувствительного нейрона в коже; 6 — эффекторное окончание двигательного (исполнительного) нейрона на мышце; — направ­ление проведения нервного сигнала
    На концах отростков ней­ронов расположены нервные окончания (концевой аппарат нервного волокна). Соответ­ственно функциональному раз­делению нейронов различают рецепторные, эффекторные и межнейронные окончания. Рецепторными называются окончания дендритов чувствитель­ных нейронов, воспринимающие раздражение; эффекторными — окончания аксонов исполнительных нейронов, образую­щие синапсы на мышечном волокне или на железистой клетке; межнейронными — окончания аксонов вставочных и чувствительных нейронов, образующие синапсы на других нейронах.

    Общее направление эволюции ЦНС — увеличение числа вставочных нейронов. Из более чем ста миллиардов нейронов человека не менее 70% составляют именно вставочные нерв­ные клетки.

    Одной из особенностей нейронов является то, что после развития в эмбриональном периоде из клеток-предшествен­ниц — нейробластов — нейроны существуют не делясь, т. е. постоянно находятся в интерфазе. Это биологически оправда­но, так как в течение всей жизни организма между нейронами постоянно образуются новые связи. Они утрачивались бы в случае деления нейрона, и, следовательно, терялся бы инди­видуальный опыт особи, «записанный» на синапсах.

    Необходимо также подчеркнуть высокую скорость обмен­ных процессов в нервной ткани. Показателем этого в первую очередь является потребление кислорода. Установлено, что головной мозг человека, вес которого составляет 2—2,5% от веса тела, потребляет до 20% поступающего в организм кис­лорода.
    Как уже отмечалось, в нервную ткань, кроме нейронов, вхо­дят и клетки — спутницы нейронов — нейроглия (рис. 5).




    Рис. 5. Виды нейроглии: а — астроциты;

    б — олигодендроциты; в — клетки микроглии среди более крупных нейронов.
    Клетки нейроглии (астроциты, олигодендроциты, микроглия) заполняют все пространство между нейронами, защищая их от механических повреждений (опорная функция). Их при­мерно в 10 раз больше, чем нейронов, и, в отличие от них, глиальные клетки сохраняют способность к делению в течение всей жизни. Кроме того, они образуют миелиновые оболочки вокруг нервных волокон. В ходе этого процесса олигодендроцит (в ЦНС) или его разновидность — шванновская клетка (в пе­риферической нервной системе) обхватывает участок нервно­го волокна. Затем она образует вырост в виде язычка, который закручивается вокруг волокна, формируя слои миелина (ци­топлазма при этом выдавливается). Таким образом, слои ми­елина представляют собой, по сути, плотно спрессованную цитоплазматическую мембрану.

    Нейроглия выполняет также защитную функцию. Она за­ключается, во-первых, в том, что глиальные клетки (в основ­ном астроциты) вместе с эпителиальными клетками капилля­ров образуют барьер между кровью и нейронами, не пропу­ская к последним нежелательные (вредные) вещества. Такой барьер называют гематоэнцефалическим. Во-вторых, клетки микроглии выполняют в нервной системе функцию фагоци­тов. Осуществляя трофическую функцию, нейроглия снабжа­ет нейроны питательными веществами, управляет водно-соле­вым обменом и т. п.
    (к оглавлению)

    Мышечная ткань

    Мышечная ткань составляет до 40% массы тела млекопитающего. Она образуется из мезодермы зародыша и состоит из высокоспециализированных сократительных клеток или волокон, соединенных между собой соединительной тканью. В организме имеется три типа мышц, различающихся по характеру иннервации: произвольные (поперечно-полосатые), непроизвольные (гладкие) и сердечная мышца.

    Черты

    Поперечно-полосатые мышцы

    Гладкие мышцы

    Сердечная мышца

    Другие названия

    Произвольные, скелетные

    Непроизвольные



    Специализация

    Очень высокоспециализированные

    Менее специализированные

    Более специализирована, чем непроизвольные мышцы

    Строение

    Очень длинные клетки (обычно их называют волокнами), подразделенные на единицы, называемые саркомерами. Волокна соединены друг с другом соединительной тканью, богатой кровеносными сосудами

    Состоят из отдельных веретеновидных клеток, собранных в пучки или пласты

    Клетки на концах разветвляются и соединяются друг с другом при помощи особых поверхностных отростков - вставочных дисков. Волокна образуют трехмерную структуру

    Ядро

    Ядер несколько; они располагаются по-разному у периферии волокна

    Одно овальное ядро, расположенное в центре клетки

    Несколько ядер, расположенных в центре клетки

    Содержимое цитоплазмы

    Митохондрии, расположенные рядами по периферии волокон и между ними; хорошо выраженная ретикулоэндотелиальная система, образующая сеть трубочек; хорошо развитая система Т-трубочек; гранулы гликогена и капельки жира

    Хорошо выраженные митохондрии; отдельные трубочки ретикулоэндотелиальной системы; гранулы гликогена

    Многочисленные крупные митохондрии, сосредоточенные в саркоплазме у полюсов ядра; слабо развитая ретикулоэндотелиальная система, состоящая из сети трубочек; система Т-трубочек хорошо развита

    Сарколемма

    Имеется

    Отсутствует

    Имеется

    Миофиламенты (миофибриллы)

    Хорошо видны; длина 1-40 мм, диаметр 10-60 мкм

    Плохо различимы; длина 0,02-0,5 мм, диаметр 5-10 мкм

    Хорошо видны; длина 0,08 мм или менее, диаметр 12-15 мкм

    Иннервация

    Двигательные нервы от головного и спинного мозга (нейрогенная регуляция)

    Автономная (вегетативная) нервная система (нейрогенная регуляция)

    Миогенная регуляция, но на скорость сокращений может влиять вегетативная нервная система

    Поперечная исчерченность

    Имеется

    Отсутствует

    Имеется

    Вставочные диски

    Отсутствуют

    Отсутствуют

    Имеются

    Активность

    Мощные быстрые сокращения, короткий рефрактерный период, а поэтому быстрое утомление

    Относительно медленное ритмическое сокращение и расслабление, как при перистальтике кишечника

    Быстрое ритмическое сокращение и расслабление, длительный рефрактерный период, а поэтому утомление не наступает; не может долго оставаться в состоянии сокращения

    Локализация

    Прикреплены к осевому скелету,
    скелету конечностей и черепу

    В стенках пищеварительной и мочеполовой систем, дыхательных путей и кровеносных сосудов

    Только в стенке сердца
    1   2   3


    написать администратору сайта