Главная страница

Глик Молекулярная биотехнология. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. Пер с англ. М. Мир, 2002. 589 с


Скачать 9.74 Mb.
НазваниеГлик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. Пер с англ. М. Мир, 2002. 589 с
АнкорГлик Молекулярная биотехнология.doc
Дата28.01.2017
Размер9.74 Mb.
Формат файлаdoc
Имя файлаГлик Молекулярная биотехнология.doc
ТипДокументы
#189
страница67 из 88
1   ...   63   64   65   66   67   68   69   70   ...   88

пенетрантностью заболевания. Другими словами, у индивидов III-18, IV-4 и IV-14 есть ген BFNC, но он не экспрессируется. Аналогичные случаи при анализе сцепления других заболеваний могут обусловливаться ошибками в диагностике или тем, что у некоторых индивидов, несущих ген заболевания, симптомы еще не проявились.

В нескольких случаях дети родителя, больного BFNC, несут хромосому (8,2) (например, IV-7 и IV-11), но никаких симптомов заболевания у них не обнаруживается. В обоих упомянутых выше случаях можно определить происхождение данной хромосомы. Например, индивид IV-7 унаследовал хромосому (14,1) от больного отца, а хромосому (8,2) с нормальным геном BFNC — от здоровой матери. Сложнее объяснить генотипы индивидов IV-9 и V-1. С одной стороны, они могли получить хромосому (8,2) с нормальным геном BFNC от здоровых предков.

458            ГЛАВА 20



Построение генетической карты сцепления человека с помощью метода, основанного на полиморфизме длины рестрикционных фрагментов


D. Botstein, R. L. Whire, M. Skolnick, R. W. Davis

Am. J. Hum. Genet. 32: 314-331, 1980

Часто встречающиеся типы полиморфизма у человека, которые можно типировать с помощью полимеразной цепной реакции


J. L. Weber, Р. Е, May Am. J. Hum. Genet.44; 388-396. 1989




Бурное развитие  молекулярной генетики человека, начавшееся в 1980-х гг., стало возможным благодаря   новаторским   идеям  Д. Ботштейна, Р. Уайта, М. Сколника и С. Дэвиса. Они обратили внимание,    что   полиморфизм длины   рестрикционных   фрагментов (ПДРФ) человека порождает полиморфные аллели (маркерные локусы),  поддающиеся картированию. Как писали авторы в своей статье, «мы хотим предложить новый способ построения   генетической   карты сиепления человека, В его основе лежит создание при помощи технологии  рекомбинантных ДНК случайных однокопийных ДНК-зондов, способных выявлять полиморфные нуклеотидные последовательности при гибридизации с индивидуальными ДНК, обработанными рестриктазой».  Более того, они осознали, что, используя сцепление гена того или иного заболевания с маркерным локусом, можно определить хро-

мосомную локализацию этого гена. Эта идея не была высказана ими прямо, но она непосредственно вытекала из их концепции, Ботштейн и др, пришли к абсолютно    верному   выводу: «Применение   набора   зондов, специфичных в отношении полиморфных участков ДНК, для анализа ДНК членов родословных с большим числом поколений откроет новые горизонты в генетике человека». К 1992 г, на разных хромосомах человека были идентифицированы и картированы сотни ПДРФ- маркеров.  С их помощью были изолированы гены таких наследственных заболеваний, как миодистрофия Дюшенна и муковисцидоз. К сожалению, выcокополиморфные локусы расположены на разных хромосомах человека неравномерно и не всегда на близком расстоянии друг от друга. Кроме того,  ПДРФ-анализ, основанный  на гибридизации зонда с

рестрицированной ДНК, весьма трудоемок и часто дает ошибочные результаты. Все эти проблемы удалось решить, когда Вебер и Мэй обнаружили, что по всему геному человека разбросано множество высокополиморфных ди-, три- и тетрануклеотидных повторов (коротких тандемных повторов; STS, от англ, short tandem repeats), вариации которых легко различаются при помощи ПЦР, Как писали авторы,  «...данный тип   полиморфных   последовательностей, вероятно, найдет широкое применение при изучении многих генов наследственных заболеваний и позволит значительно увеличить разрешение генетических   карт   человека»,    STR, особенно динуклеотидные тандемные   повторы,   эффективны как маркеры; в этом качестве они уже вытеснили ПДРФ-локусы и в настоящее время используются для построения подробных генетических карт всех хромосом человека.

Например, индивид IV-9 мог унаследовать хромосому (8,2) через свою мать (III-15) от бабушки (II-6). С другой стороны, отсутствие у IV-9 и V-1 признаков заболевания может объясняться неполной пенетрантностью в том случае, если они унаследовали хромосому (8,2) с геном BFNC*Dот больного родителя. Необходимо подчеркнуть, что в других семьях с BFNC может не наблюдаться сцепления аллелей D20S19*Sи D20S20*2 саллелем данного заболевания. Так получилось, что в рассмотренном нами случае именно эти полиморфные аллели находятся на той же хромосоме, которая несет аллель BFNC*Dи которая унаследована от одного предка. В общем случае сцеплены локусы, а не аллели.

Из данных табл. 20.4 можно предположить, что расстояние от локусов D20SI9 и D20S20 до локуса BFNCне превышает 5 сМ (<5 · l06 п. н.). В общем случае анализ сцепления не позволяет разграничить два локуса, если расстояние между ними меньше 1—2 сМ, Поскольку локусы D20S19 и D20S20 расположены внутри района 13.2—13.3 длинного плеча (q) хромосомы 20

Молекулярная генетика человека           459
(20q13.2-13.3), то и локус BFNCдолжен находиться вблизи данного района хромосомы или внутри него. К настоящему времени при помощи метода, основанного на вычислении лод-балла и использовании полиморфных маркеров, в специфических хромосомных участках было картировано более ста генов различных заболеваний.

1   ...   63   64   65   66   67   68   69   70   ...   88


написать администратору сайта