Главная страница
Навигация по странице:

  • [c.161] Далее: IV. ОБРАТНАЯ СВЯЗЬ И КОЛЕБАНИЯ

  • Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания IV. ОБРАТНАЯ СВЯЗЬ И КОЛЕБАНИЯ

  • Винер Н. Кибернетика, или управление и связь в... Httpgrachev62. narod ru


    Скачать 2.71 Mb.
    НазваниеHttpgrachev62. narod ru
    Дата05.01.2023
    Размер2.71 Mb.
    Формат файлаdoc
    Имя файлаВинер Н. Кибернетика, или управление и связь в...doc
    ТипДокументы
    #873928
    страница14 из 26
    1   ...   10   11   12   13   14   15   16   17   ...   26

    [c.155]

    Пусть

    ,


    (3.927)




    (3.928)

    и

    .

    (3.929)

    Тогда при очень общих условиях k(ω) будет граничным значением на единичном круге для функции без нулей и особых точек внутри единичного круга; (а является здесь углом. Отсюда



    (3.930)

    Если теперь за наилучшее линейное предсказание функции fn(α) с опережением v принимается

    ,


    (3.931)

    то

    .


    (3.932)

    Это выражение аналогично выражению (3.88). Заметим, что если положить

    ,


    (3.933)

    то



    (3.934)

    [c.156]

    Из нашего способа образования k(ω) видно, что для весьма широкого класса случаев мы вправе положить

    .


    (3.935)

    Тогда уравнение (3.934) принимает вид

    .


    (3.936)

    В частности, при v=l

    ,



    (3.937)

    или



    (3.938)

    Таким образом, при предсказании на один шаг вперед наилучшим значением для fn+1(α) будет

    ;


    (3.939)

    последовательным же предсказанием по шагам мы можем решить всю задачу линейного предсказания для дискретных временных рядов. Как и в непрерывном случае, это будет наилучшим возможным предсказанием относительно любых методов, если

    .


    (3.940)

    Переход от непрерывного случая к дискретному в задаче фильтрации совершается примерно таким же путем. Формула (3.913) для частотной характеристики наилучшего фильтра принимает вид

    ,


    (3.941)

    где все члены имеют тот же смысл, что и в непрерывном случае, за исключением того, что все интегралы по ω и u [c.157] имеют пределы от –π до π, а не от –∞ до ∞ и вместо интегралов по t берутся дискретные суммы по v. Фильтры для дискретных временных рядов представляют собой обычно не столько физически осуществимые устройства для применения в электрической схеме, сколько математические процедуры, позволяющие статистикам получать наилучшие результаты со статистически несовершенными данными.

    Наконец, скорость передачи информации дискретным временным рядом вида

    ,


    (3.942)

    при наличии шума

    ,


    (3.943)

    где γ и δ независимы, будет точным аналогом выражения (3.922), а именно:

    ,

    (3.944)

    где на интервале (–π, π) выражение





    (3.945)

    изображает распределение мощности сообщения по частоте, а выражение





    (3.946)

    изображает распределение мощности шума.

    Изложенные здесь статистические теории предполагают полное знание прошлого наблюдаемых нами временных рядов. Во всех реальных случаях мы должны довольствоваться меньшим, поскольку наши наблюдения не распространяются в прошлое до бесконечности. Разработка нашей теории за пределы этого [c.158] ограничения требует расширения существующих методов выборки. Автор и другие исследователи сделали первые шаги в этом направлении. Это связано со всеми сложностями применения закона Бейеса либо тех терминологических ухищрений теории правдоподобия11, которые на первый взгляд устраняют необходимость в применении закона Бейеса, но в действительности лишь перелагают ответственность за его применение на статистика-практика или на лицо, использующее в конце концов результаты, полученные статистиком-практиком. Тем временем статистик-теоретик может вполне честно утверждать, что все сказанное им является совершенно строгим и безупречным.

    В заключение этой главы мы коснемся современной квантовой механики, на которой сильнее всего сказалось вторжение теории временных рядов в современную физику. В ньютоновой физике последовательность физических явлений полностью определяется своим прошлым, и в частности, указанием всех положений и импульсов в какой-либо один момент. В полной гиббсовской теории, при точном определении многомерного временного ряда всей Вселенной, знание всех положений и импульсов в какой-либо один момент также определило бы все будущее. И только вследствие того, что существуют неизвестные, ненаблюдаемые координаты и импульсы, только по этой причине временные ряды, с которыми мы фактически работаем, приобретают своего рода смесительное свойство, с которым мы познакомились в этой главе для случая временных рядов броунова движения. Большим вкладом Гейзенберга в физику была замена этого все еще квазиньютонова мира Гиббса миром, в котором временные ряды совершенно не могут быть сведены к набору детерминированных нитей развития во времени. В квантовой механике все прошлое индивидуальной системы не создает никакого абсолютного определения будущего этой системы, но дает лишь распределение возможных будущих состояний. Величины, которые требуются классической физике для знания всего поведения системы, можно наблюдать одновременно лишь приближенным и нестрогим образом, хотя эти наблюдения и достаточно точны для нужд классической физики в том диапазоне [c.159] точности, в котором экспериментально доказана ее применимость. Условия наблюдения импульса и соответствующего ему положения несовместимы. Для наблюдения положения системы с наибольшей возможной точностью мы должны наблюдать его с помощью световых или электронных волн или аналогичных средств с высокой разрешающей способностью или короткой длиной волны. Однако свет обладает корпускулярным действием, зависящим только от его частоты, и при освещении тела светом высокой частоты количество движения тела изменяется тем больше, чем выше частота. С другой стороны, свет низкой частоты дает минимальное изменение импульса освещаемых частиц, но не имеет достаточной разрешающей способности, чтобы дать резкий отсчет положений. Промежуточные частоты света дают размытый отсчет как положений, так и импульсов. Вообще нельзя придумать системы наблюдений, которая могла бы дать нам достаточно информации о прошлом системы, чтобы получить полную информацию о ее будущем.

    Тем не менее, как и в случае всех ансамблей временных рядов, изложенная здесь теория количества информации, а следовательно, и теория энтропии сохраняют силу. Но так как мы теперь имеем дело с временными рядами, обладающими свойством перемешивания даже в случае, когда наши данные настолько полны, насколько это возможно, то наша система, очевидно, лишена абсолютных потенциальных барьеров, и с течением времени любое состояние системы может и будет переходить в любое другое состояние. Однако вероятность такого перехода зависит в конечном счете от относительной вероятности или меры данных двух состояний. Последняя оказывается особенно большой для состояний, которые могут быть преобразованы сами в себя большим числом преобразований, т.е. для состояний, которые, на языке квантовой теории, имеют большой внутренний резонанс, или большое квантовое вырождение. Примером может служить бензоловое кольцо, так как здесь оба состояния эквивалентны:



    [c.160]

    Это наводит на следующую мысль. Пусть дана система, в которой составные части могут различными способами близко соединяться друг с другом, как в случае смеси аминокислот, организующейся в белковые цепи, тогда ситуация, при которой многие из этих цепей одинаковы и проходят через стадию тесной связи между собой, может оказаться более устойчивой, чем ситуация, при которой они различны. Холдэйи предположил, что именно таким путем воспроизводят себя гены и вирусы, и хотя он не подтвердил своего предположения окончательными доказательствами, я не вижу причин, почему не принять его как пробную гипотезу. Как указал сам Холдэйн, поскольку в квантовой теории ни одна частица не имеет совершенно четкой индивидуальности, можно сказать лишь приблизительно, какой из двух экземпляров гена, воспроизведшего себя таким образом, является оригиналом и какой – копией.

    Это явление резонанса, как известно, очень часто встречается в живом веществе. Сент-Дьёрдьи указал на его значение в конструкции мышц. Вещества с большим резонансом обычно обладают ненормально большой способностью запасать энергию и информацию, а такое ненормально большое запасание, бесспорно, имеет место при мышечном сокращении.

    Эти же явления, участвующие в воспроизведении, имеют, вероятно, отношение и к чрезвычайной специфичности химических веществ, обнаруживаемых в живых организмах, не только по отношению к разным видам, но даже по отношению к особям одного вида. Соображения такого рода могут иметь большое значение в иммунологии. [c.161]

    Далее:
    IV. ОБРАТНАЯ СВЯЗЬ И КОЛЕБАНИЯ


    К оглавлению

    ПРИМЕЧАНИЯ

    1 Вокодер – система “синтетической” телефонии, в которой по каналам связи передаются вместо натуральных речевых сигналов упрощенные командные сигналы, получаемые в результате анализа речи на передающем конце. Тем самым передача занимает меньшую полосу частот. На приемном конце речь искусственно синтезируется под управлением командных сигналов, определяющих высоту и силу тонов, ритм и т.д. – Прим. ред.
    Вернуться к тексту

    2 Здесь автор использует личное сообщение Дж. фон Неймана.
    Вернуться к тексту

    3 Равенство (3.04) означает, что площадь под кривой y=f1(x) равна 1. Поэтому средняя ширина этой области равна обратной величине ее средней высоты, т.е. среднего значения функции f1(x). Отсюда, по-видимому, автор заключает об указанной вольной связи между средними логарифмами и, приняв, согласно (3.03), минус средний двоичный логарифм от ширины области за меру количества информации, находит в итоге ,
    как в (3.05). – Прим. ред.
    Вернуться к тексту

    4 Деление на



    служит нормировке апостериорной плотности вероятности. – Прим. ред.
    Вернуться к тексту

    5 Раlеу R.Е.А.С., Wiener N. Fourier Transforms in the Complex Domain / Amer. Math. Soc. – Colloquium Publications. – Vol. 19. – New York, 1934. Chapter 10 (русский перевод: Винер Н., Пэли Р. Преобразование Фурье в комплексной области. – М.: Наука, 1964. Гл. 10. – Ред.).
    Вернуться к тексту

    6 Stielltes Т.J. Annales de la Fac. des Sc. de Toulouse. – 1894. – P. 165; Lebesgue Н. Lemons sur l'Integration. – Paris: Gauthier-Villars et Cie, 1928 (русский перевод: Лебег А. Интегрирование и отыскание примитивных функций. – М.–Л.: ГТТИ, 1934. – Ред.)
    Вернуться к тексту

    7 Это – открытое Купменом свойство перемешивания, составляющее необходимую и достаточную эргодическую предпосылку для оправдания статистической механики.
    Вернуться к тексту

    8 Обозначая через действительную часть от стоящего справа выражения. – Прим. ред.
    Вернуться к тексту

    9 Под значением Коши несобственного интеграла

    обычно понимают выражение
    Прим. ред.
    Вернуться к тексту

    10 В частности, можно указать последние статьи д-ра Ю.В. Ли.
    Вернуться к тексту

    11 См. работы Р.А. Фишера и Дж. фон Неймана.
    Вернуться к тексту


    Конец формы

    Винер Н. Кибернетика, или управление и связь в животном и машине. – 2-е издание. – М.: Наука; Главная редакция изданий для зарубежных стран, 1983. – 344 с.

    Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания

    IV. ОБРАТНАЯ СВЯЗЬ И КОЛЕБАНИЯ

    В неврологическую клинику приходит больной. Он не парализован и, получив приказание, может двигать ногами. Тем не менее он страдает тяжелым недугом. Он идет странной, неуверенной походкой и все время смотрит вниз, на землю и на свои ноги. Каждый шаг он начинает с рывка, выбрасывая вперед сначала одну, потом другую ногу. Если ему завязать глаза, он не сможет стоять, он шатается и падает. Что с ним?

    Приходит другой больной. Пока он неподвижно сидит на стуле, кажется, что у него все в порядке. Но если предложить ему папиросу, то при попытке взять ее рукой он промахнется. Затем он столь же тщетно качнет руку в обратном направлении, потом опять вперед, и, наконец, его рука станет совершать лишь быстрые и бесцельные колебания. Дайте ему стакан воды, и он выплеснет всю воду, прежде чем сумеет поднести стакан ко рту. Что с ним?

    Оба больные страдают разными формами так называемой атаксии. Их мышцы достаточно сильны и здоровы, но они не могут управлять своими движениями. Первый больной страдает спинной сухоткой. Часть спинного мозга, обычно воспринимающего ощущения, повреждена или разрушена поздними осложнениями от сифилиса. Поступающие сигналы притуплены или даже полностью пропадают. Рецепторы в суставах, сухожилиях, мышцах и подошвах его ног, обычно сообщавшие ему о положении и движении ног, не посылают сигналов, которые центральная нервная система могла бы принять и передать, и чтобы получить информацию о положении своего тела, больной должен полагаться на глаза и органы равновесия внутреннего уха. Физиолог на своем языке скажет, что больной потерял значительную часть проприоцептивных и кинестетических [c.162] ощущений. Второй больной не потерял проприоцептивных ощущений – у него повреждение мозжечка, и он болен так называемым мозжечковым, или интенционным, тремором. По-видимому, функция мозжечка – соразмерять мышечную реакцию с проприоцептивными сигналами, и если эта соразмерность нарушена, одним из следствий может явиться тремор.

    Мы видим, таким образом, что для эффективного воздействия на внешний мир не только необходимо иметь хорошие эффекторы, но действие этих эффекторов должно находиться под надлежащим контролем центральной нервной системы; показания же контрольных органов должны сочетаться надлежащим образом с другими сведениями, поступающими из органов чувств, образуя правильно соразмеренные выходные сигналы к эффекторам. Нечто подобное наблюдается и в механических системах. Рассмотрим центральный пост сигнализации на железной дороге. Оператор управляет рядом рычагов, которые открывают или закрывают семафоры и переводят стрелки. Однако он не может слепо верить, что семафор и стрелки подчинились его приказаниям. Стрелки могли замерзнуть или снег мог согнуть крылья семафоров, и действительное положение стрелок и сигналов семафоров – эффекторов оператора – может не соответствовать его приказаниям. Во избежание опасностей, неизбежно связанных с такой возможностью, каждый эффектор – стрелка или сигнал семафора – соединяется с контрольными приборами на сигнальном посту, которые сообщают оператору о действительном состоянии и работе эффектора. Это представляет собой механическую аналогию повторению приказов в военно-морском флоте, где по уставу каждый подчиненный по получении приказа повторяет его своему начальнику, чтобы показать, что он расслышал и понял. На основании таких повторенных приказов и действует оператор.

    Заметим, что в этой системе человек участвует в цепи прямой и обратной передачи информации, в цепи, которую мы далее будем называть цепью обратной связи. Правда, оператор не может действовать полностью по своему произволу; стрелки и сигналы связаны блокировкой, механической или электрической, и не в его воле выбрать гибельные комбинации. Но имеются цепи [c.163] обратной связи, в которых человек совершенно не участвует. Одна из таких цепей – обычный термостат, регулирующий отопление жилища. Термостат устанавливают на желательную температуру помещения, и если действительная температура ниже” то срабатывает устройство, которое открывает заслонку печи для усиления тяги или увеличивает поступление горючего и тем самым доводит температуру помещения до желательного уровня. Если же температура помещения превышает желательный уровень, то выключается тяга, либо уменьшается или прекращается поступление горючего. Таким образом, температура помещения удерживается приблизительно на постоянном уровне. Заметим, что постоянство этого уровня зависит от качества конструкции термостата и что плохо спроектированный термостат может вызвать сильные колебания температуры, подобные движениям человека, страдающего мозжечковым тремором.

    Другой пример чисто механической системы обратной связи – это изученный впервые Кларком Максвеллом регулятор паровой машины, служащий для регулировки ее скорости при переменных режимах нагрузки. Регулятор в своем первоначальном виде, как его сконструировал Уатт, состоит из двух шаров, укрепленных на маятниковых стрежнях на противоположных сторонах вращающегося вала. Собственный вес или пружина тянет шары вниз, а центробежная сила, зависящая от угловой скорости вала, стремится подбросить их вверх. Поэтому они принимают некоторое промежуточное положение, которое также зависит от угловой скорости. Шары через другие стержни управляют положением муфты, сидящей на валу, которая приводит в движение золотник, открывающий впускные клапаны цилиндра, когда скорость машины уменьшается и шары опускаются, и закрывающий их, когда скорость машины увеличивается и шары поднимаются. Заметим, что обратная связь стремится противодействовать тому, что делает система; следовательно, эта обратная связь является отрицательной.

    Итак, мы рассмотрели примеры отрицательной обратной связи для стабилизации температуры и отрицательной обратной связи для стабилизации скорости. Возможна также отрицательная обратная связь для [c.164] стабилизации положения, как в рулевых машинах корабля, которые приходят в действие при наличии угловой разности между положением штурвала и положением руля и действуют всегда таким образом, чтобы привести положение руля в соответствие с положением штурвала. Обратная связь при произвольных действиях человека имеет такой же характер. Мы не хотим специально приводить в движение определенные мышцы и даже вообще не знаем, какие мышцы нужно привести в движение, чтобы выполнить данную задачу, мы просто хотим взять папиросу. Наше движение регулируется степенью того, насколько задача еще не выполнена.

    Информация, поступающая обратно в управляющий центр, стремится противодействовать отклонению управляемой величины от управляющей, но она может зависеть от этого отклонения весьма различным образом. Простейшие управляющие системы – линейные системы: выходной сигнал исполнительного органа зависит линейно от входного сигнала, и при сложении входных сигналов складываются и выходные сигналы. Выходной сигнал отсчитывается каким-нибудь прибором, также линейным. Этот отсчет просто вычитается из входного сигнала. Мы хотим дать точную теорию работы такой системы и, в частности, исследовать ее неисправное поведение и возникновение в ней колебаний при неправильном обращении или перегрузке.

    В этой книге мы по возможности избегали математической символики и математических методов, хотя в ряде мест, включая предыдущую главу, вынуждены были примириться с ними. Сейчас речь опять пойдет о вопросах, где математическая символика – самый надежный язык; избежать ее можно только ценой длинных перифраз, которые вряд ли будут понятны профану и которые поймет лишь читатель, знакомый с математической символикой, поскольку в его власти перевести их в символы. Наилучший компромисс, который мы можем выбрать, – это дополнять символику пространными словесными пояснениями.

    Пусть f(t)–функция времени t, где t изменяется от –∞ до ∞; иначе говоря, f(t)– величина, принимающая определенное числовое значение для каждого момента t. В любой момент t нам доступны величины f(s), где s меньше или равно t, но отнюдь не больше t. [c.165] Мы располагаем устройствами, электрическими или механическими, которые задерживают входной сигнал на фиксированное время и выдают нам при входном сигнале f(t) выходной сигнал f(t–τ), γде τ – фиксированная задержка.

    Мы можем включить одновременно несколько таких устройств, получив на выходах сигналы f(t–τ1), f(t–τ2),..., f(t–τn). Каждый из этих выходных сигналов мы можем умножить на фиксированные величины, положительные или отрицательные. Так, при помощи потенциометра можно умножить напряжение на фиксированное положительное число, меньшее единицы, и не очень трудно изобрести автоматические компенсационные устройства и усилители, чтобы умножать напряжение на отрицательные величины или на величины, большие единицы. Нетрудно также составить простую электрическую схему для непрерывного сложения напряжений, при помощи которой мы получим выход

    .


    (4.01)

    Увеличивая число задержек τk и выбирая подходящим образом коэффициенты ak, мы можем сколь угодно приблизиться к выходному сигналу вида

    .


    (4.02)

    Обратим внимание на то существенное обстоятельство, что в этом выражении интегрирование производится от 0 до ∞, а не от –∞ до ∞. В противном случае мы могли бы с помощью различных практических устройств преобразовать наш сигнал в f(t+σ), где σ положительно. Но это предполагает знание будущего функции f(t), a f(t) может быть величиной, которая не определяется однозначно своим прошлым; пример – координаты трамвая, который может повернуть на стрелке в ту или другую сторону. Если физический процесс по видимости дает нам оператор, преобразующий f(t) в




    (4.03)
    1   ...   10   11   12   13   14   15   16   17   ...   26


    написать администратору сайта