Винер Н. Кибернетика, или управление и связь в... Httpgrachev62. narod ru
Скачать 2.71 Mb.
|
[c.133] где сумма берется по всем разбиениям величин t1, ..., tnна различные пары, произведение – по всем парам в каждом разбиении. Другими словами, если нам известны средние значения попарных произведений величин x(tj, α), то нам известны и средние значения всех многочленов от этих величин и, следовательно, их полное статистическое распределение. До сих пор мы рассматривали броуновы перемещения x (tj,α), в которых t положительно. Положив
где α и β имеют независимые равномерные распределения в интервале (0, 1), получим распределение для ξ(t, α, β), где t пробегает всю бесконечную действительную ось. Существует хорошо известный математический прием отобразить квадрат на прямолинейный отрезок таким образом, что площадь преобразуется в длину. Надо лишь записать координаты квадрата в десятичной форме
и положить
и мы получим искомое отображение, являющееся взаимно однозначным почти для всех точек как прямолинейного отрезка, так и квадрата. Используя эту подстановку, введем
Теперь мы хотим определить в некотором подходящем смысле
Сразу приходит мысль определить указанное выражение как интеграл Стильтьеса6, но это встречает [c.134] препятствие в том, что ξ представляет собой весьма нерегулярную функцию от t. Однако если К приближается достаточно быстро к нулю при t→ ∞ и является достаточно гладкой функцией, то разумно положить
При этих условиях мы формально получим
Если теперь t и s имеют противоположные знаки, то
а если они одного знака и |s|<|t|, то
[c.135] Отсюда
В частности,
Более того,
[c.136] где сумма берется по всем разбиениям величин τ1, …, τn на пары, а произведение – по парам в каждом разбиении. Выражение
изображает очень важный ансамбль временных рядов по переменной t, зависящих от некоторого параметра распределения γ. Доказанное нами равносильно утверждению, что все моменты и, следовательно, все статистические параметры этого распределения зависят от функции
представляющей собой известную в статистике автокорреляционную функцию со сдвигом τ. Таким образом, распределение функции f(t, γ) имеет те же статистики, что и функция f(t+t1, γ); и действительно, можно доказать, что если
то преобразование параметра γ в Г сохраняет меру. Другими словами, наш временной ряд f(t, γ) находится в статистическом равновесии. Далее, если мы рассмотрим среднее значение для
то оно состоит в точности из членов выражения
[c.137] и из конечного числа членов, имеющих множителями степени выражения
если последнее стремится к нулю при σ→∞, то (3.38) будет пределом выражения (3.37). Другими словами, распределения функций f(t, γ) и f(t+σ, γ) становятся асимптотически независимыми, когда σ→∞. Более общим, но совершенно аналогичным рассуждением можно показать, что одновременное распределение функций f(t1, γ), ..., f(tn, γ) и функций f(σ+s1, γ), …, f(σ+sm, γ) стремится к совместному распределению первого и второго множества, когда σ→∞. Другими словами, если F[f (t, γ)] – любой ограниченный измеримый функционал, т.е. величина, зависящая от всего распределения значений функции f(t, γ) от t, то для него должно выполняться условие
Если F[f (t, γ)] инвариантен при сдвиге по t и принимает только значения 0 или 1, то
т.е. группа преобразований f(t, γ) в f(t+σ, γ) метрически транзитивна. Отсюда следует, что если F[f (t, γ)] – любой интегрируемый функционал от f как функции от t, то по эргодической теореме
[c.138] для всех значений γ, исключая множество нулевой меры. Таким образом, мы почти всегда можем определить любой статистический параметр такого временного ряда (и даже любого счетного множества статистических параметров) из прошлой истории одного только параметра. В самом деле, если для такого временного ряда мы знаем
то мы знаем Ф(t) почти во всех случаях и располагаем полным статистическим знанием о временном ряде. Некоторые величины, зависящие от временного ряда такого рода, обладают интересными свойствами. В частности, интересно знать среднее значение величины
Формально мы можем записать его в виде
Весьма интересная задача – попытаться построить возможно более общий временной ряд из простых рядов броунова движения. При таких построениях, как подсказывает пример рядов Фурье, разложения типа (3.44) составляют удобные строительные блоки. В частности, исследуем временные ряды специального вида:
[c.139] Предположим, что нам известна функция ξ(τ, γ), а также выражение (3.46). Тогда при t1>t2 находим, как в (3.45),
Умножив на и положив s(t2–t1)=iσ, получим при t2→t1
Примем K(t1, λ) за новую независимую переменную μ и, решая относительно λ, получим
Тогда выражение (3.48) будет иметь вид
Отсюда преобразованием Фурье можно найти
как функцию от μ, коль скоро μ лежит между K(t1, a) и K(t1, b). Интегрируя эту функцию по μ, найдем
[c.140] как функцию от K(t1, λ) и t1. Иначе говоря, существует известная функция F (u, v), такая, что
Поскольку левая часть этого равенства не зависит от t1, мы можем обозначить ее через G(λ) и положить
Здесь F – известная функция, и ее можно обратить относительно первого аргумента, положив
где H – также известная функция. Отсюда
Тогда выражение
будет известной функцией и
откуда
или
Входящую в это выражение константу можно определить из соотношения
или
Очевидно, что если а конечно, то безразлично, какое значение мы ему дадим; в самом деле, наш оператор не [c.141] изменится от прибавления одной и той же величины ко всем значениям λ. Поэтому можно взять а=0. Таким образом, мы определили λ как функцию от G и, следовательно, G – как функцию от λ. Из (3.55) следует, что мы тем самым определили K(t, λ). Для завершения расчетов нам нужно только найти b. Это число можно определить сравнением выражений
и
Таким образом, если при некоторых условиях, которые еще остается точно сформулировать, временной ряд допускает запись в виде (3.46) и известна функция ξ(t, γ) то мы можем определить функцию K(t, λ) в (3.46) и числа а и b с точностью до неопределенной константы, прибавляемой к а, λ и b. Не возникает особых трудностей при b→+∞, также не слишком сложно распространить эти рассуждения на случай а→ –∞. Конечно, предстоит проделать еще немалую работу, рассматривая задачу обращения функций в случае, когда результаты не однозначны, и общие условия справедливости соответствующих разложений. Тем не менее мы по крайней мере сделали первый шаг к решению задачи приведения обширного класса временных рядов к каноническому виду, что чрезвычайно важно для конкретного формального применения теорий предсказания и измерения информации, намеченных выше в этой главе. Имеется, однако, одно очевидное ограничение, которое мы должны устранить из этого наброска теории временных рядов, а именно необходимость знать ξ(t, γ), и временной ряд, который мы разлагаем в виде (3.46). Вопрос ставится так: при каких условиях временной ряд с известными статистическими параметрами можно представить как ряд, определяемый броуновым движением, или по крайней мере как предел (в том или ином смысле) временных рядов, определяемых броуновым движением? Мы ограничимся временными рядами, [c.142] обладающими свойством метрической транзитивности и даже следующим более сильным свойством: если брать интервалы времени фиксированной длины, но отдаленные друг от друга, то распределения любых функционалов от отрезков временного ряда в этих интервалах приближаются к независимости по мере того, как интервалы отдаляются друг от друга7. Соответствующая теория уже излагалась автором. Если K(t) – достаточно непрерывная функция, то можно показать, что нули величины
по теореме М. Каца, почти всегда имеют определенную плотность и что эта плотность при подходящем выборе К может быть сделана сколь угодно большой. Пусть выбрано такое КD, что плотность равна D. Последовательность нулей величины , от –∞ до ∞ обозначим через Zn(D, γ), –∞<n<–∞. Конечно, при нумерации этих нулей индекс п определяется лишь с точностью до аддитивной целочисленной константы. Пусть теперь T(t, μ) – произвольный временной ряд от непрерывной переменной t, а μ – параметр распределения временных рядов, изменяющийся равномерно в интервале (0, 1). Пусть далее
где Zn – нуль, непосредственно предшествующий моменту t. Можно показать, что, каково бы почти ни было μ, для любого конечного множества значений t1, t2, …, tv переменной х одновременное распределение величин TD(tk, μ, γ) (k=1, 2, ..., v) при D→∞ будет приближаться к одновременному распределению величин T(tk, μ) для тех же tk при D→∞. Но TD(tk, μ, γ) полностью определяется величинами tk, μ, D. Поэтому вполне уместно попытаться выразить TD(tk, μ, γ) [c.143] для данного D и данного μ, либо прямо в виде (3.46), либо некоторым образом в виде временного ряда, распределение которого является пределом (в указанном свободном смысле) распределении этого типа. Следует признать, что все это изображает скорее программу на будущее, чем уже выполненную работу. Тем не менее эта программа, по мнению автора, дает наилучшую основу для рационального, последовательного рассмотрения многих задач в области нелинейного предсказания, нелинейной фильтрации, оценки передачи информации в нелинейных системах и теории плотного газа и турбулентности. К ним принадлежат, быть может, самые острые задачи, стоящие перед техникой связи. Перейдем теперь к задаче предсказания для временных рядов вида (3.34). Мы замечаем, что единственным независимым статистическим параметром такого временного ряда является функция Ф(t), определенная формулой (3.35). Это значит, что единственной значащей величиной, связанной с K(t), является
Конечно, здесь К – величина действительная. Применяя преобразование Фурье, положим
Если известно K(s), то известно k(ω), и обратно. Тогда
Таким образом, знание Ф(t) равносильно знанию k(ω)k(–ω). Но поскольку K(s) действительно, то
откуда . Следовательно, |k(ω)|2 есть известная функция, а потому действительная часть log|k(ω)| также есть известная функция. [c.144] Если записать8
то нахождение функции K(s) эквивалентно нахождению мнимой части log k(ω). Это задача неопределенная, если не наложить дальнейшего ограничения на k(ω). Налагаемое ограничение будет состоять в том, что log k(ω) должен быть аналитической функцией и иметь достаточно малую скорость роста относительно ω в верхней полуплоскости. Для выполнения этого условия предположим, что k(ω) и [k(ω)]–1 возрастают вдоль действительной оси алгебраически. Тогда [F(ω)]2 будет четной и не более, чем логарифмически бесконечной функцией, и будет существовать главное значение Коши9 для
Преобразование, определяемое выражением (3.72), называется преобразованием Гильберта; оно изменяет cos λω в sin λω и sin λω в –cos λω. Следовательно, F(ω)+iG(ω) есть функция вида
и удовлетворяет требуемым условиям для log |k(ω)| в нижней полуплоскости. Если теперь положить
то можно показать, что при весьма общих условиях функция K(s), определяемая формулой (3.68), будет обращаться в нуль для всех отрицательных аргументов. Таким образом,
|