Главная страница
Навигация по странице:

  • Теорема утверждает, что

  • [c.115]

  • [c.118] Далее: III. ВРЕМЕННЫЕ РЯДЫ, ИНФОРМАЦИЯ И СВЯЗЬ

  • Винер Н. Кибернетика, или управление и связь в... Httpgrachev62. narod ru


    Скачать 2.71 Mb.
    НазваниеHttpgrachev62. narod ru
    Дата05.01.2023
    Размер2.71 Mb.
    Формат файлаdoc
    Имя файлаВинер Н. Кибернетика, или управление и связь в...doc
    ТипДокументы
    #873928
    страница9 из 26
    1   ...   5   6   7   8   9   10   11   12   ...   26

    где fk(x) – характер группы, и если αk(T) находится в таком же отношении к fk(x), как α(T) к f(x) в (2.03), то [c.108]



    (2.05)

    Таким образом, коль скоро h(x) допускает разложение по некоторому множеству характеров группы, то и h(Tx) при всех Т допускает такое разложение.

    Мы видели, что характеры группы порождают другие характеры при умножении и обращении; нетрудно видеть также, что константа 1 есть характер. Следовательно, умножение на характер порождает группу преобразований самих характеров; последняя называется группой характеров исходной группы.

    Если исходная группа есть группа сдвигов по бесконечной прямой, то оператор Т изменяет х в х+Т и соотношение (2.03) переходит в соотношение

    ,

    (2.06)

    которое выполняется при f(x)=eiλx, α(T)= eiλT. Характерами будут функции eiλx, а группой характеров будет группа сдвигов, изменяющая λ в λ+τ и, следовательно, имеющая такое же строение, как и исходная группа. Но дело будет обстоять иначе, если исходная группа состоит из поворотов по окружности. В этом случае оператор Т изменяет х в число, лежащее между 0 и 2π и отличающееся от х+Т на целочисленное кратное 2π. Соотношение (2.06) еще справедливо, но у нас появляется добавочное условие

    .

    (2.07)

    Положив вновь f(x) = eiλx, получим

    .

    (2.08)

    Это значит, что λ должно быть целым действительным числом – положительным, отрицательным или нулем. Следовательно, группа характеров здесь соответствует сдвигам целых действительных чисел. С другой стороны, если исходная группа есть группа сдвигов целых чисел, то х и Т в (2.06) могут принимать только целочисленные значения и функция eiλx задается полностью числом, лежащим между 0 и 2π и отличающимся от λ на целочисленное кратное 2π. Следовательно, группа характеров в этом случае по существу представляет собой группу поворотов по окружности.

    В любой группе характеров числа α(T), соответствующие данному характеру f, распределены таким образом, [c.109] что эти распределение не нарушается при умножении их всех на α(S), каков бы ни был элемент S исходной группы. Иначе говоря, если есть какое-то разумное основание взять среднее от этих чисел, не затрагиваемое, когда группа преобразуется умножением каждого ее преобразования на одно фиксированное, то либо α(Т) тождественно равно 1, либо наше среднее инвариантно относительно умножения на числа, отличные от 1, и потому должно равняться 0. Отсюда можно заключить, что среднее произведение характера на величину, с ним сопряженную (которая также является характером), будет равно 1, а среднее произведение характера на величину, сопряженную с другим характером, будет равно 0. Другими словами, если h(x) представлено как в (2.04), то



    (2.09)

    Для группы поворотов по окружности это дает нам сразу, что если



    (2.10)

    то




    (2.11)

    Для сдвигов же по бесконечной прямой результат тесно связан с тем обстоятельством, что если в некотором подходящем смысле




    (2.12)

    то в определенном смысле




    (2.13)

    Эти результаты изложены здесь очень грубо, без точной формулировки условий их справедливости. Более строгое изложение теории читатель может найти в работе, указанной в примечании9. [c.110]

    Наряду с теорией линейных инвариантов группы, существует также общая ее метрических инвариантов. Последние представляют собой системы меры Лебега, не претерпевающие изменений, когда объекты, преобразуемые группой, переставляются операторами группы. В этой связи следует упомянуть интересную теорию групповой меры, которую дал Гаар10. Как мы видели, всякая группа сама есть собрание объектов, которые переставляются между собой при умножении на операторы данной группы. Поэтому она может иметь инвариантную меру. Гаар доказал, что некоторый довольно широкий класс групп имеет однозначно определенную инвариантную меру, задаваемую строением самой группы.

    Наиболее важное применение теории метрических инвариантов группы преобразований состоит в обосновании взаимной заменимости фазовых и временных средних, которую, как мы видели выше, Гиббс тщетно пытался доказать. Это доказательство было выполнено на основе так называемой эргодической теории.

    В обычных эргодических теоремах рассматривается ансамбль Е, меру которого можно принять за единицу, и этот ансамбль преобразуется в себя сохраняющим меру преобразованием Т или группой сохраняющих меру преобразований Тλ, где –∞<λ<∞ и



    (2.14)

    Эргодическая теория имеет дело с комплексным функциями f(х) элементов х из Е. Во всех случаях f(х) считается измеримой по х, а если мы рассматриваем непрерывную группу преобразований, то f(Тλх)считается измеримой по х и λ вместе.

    В эргодической теореме Купмена – фон Неймана о сходимости в среднем функция f(х) считается принадлежащей к классу L2; это значит, что




    (2.15)

    Теорема утверждает, что [c.111]




    (2.16)

    или соответственно




    (2.17)

    сходится в среднем к пределу f*(х) при N→∞ или соответственно при А→∞ в том смысле, что




    (2.18)




    (2.19)

    В эргодической теореме Биркгоффа о сходимости “почти всюду” функция f(х) считается принадлежащей к классу L; это значит, что




    (2.20)

    Функции fN(х) и fA(х) определяются, как в (2.16) и (2.17). Теорема утверждает11, что для всех значений х, за исключением множества нулевой меры, существуют пределы



    (2.21)

    и



    (2.22)

    Особенно интересен так называемый эргодический, или метрически транзитивный, случай, когда преобразование Т или множество преобразований Тλ не оставляет инвариантным ни одно множество точек х с мерой, отличной от 1 и 0. В таком случае множество значений (для обеих эргодических теорем), на которых f*(х) пробегает заданный интервал, почти всегда есть 1 или 0. Это возможно только при том условии, что [c.112] f*(х) почти всегда постоянна. Тогда f*(х) почти всегда равна




    (2.23)

    Таким образом, в теореме Купмена мы получаем предел в среднем12




    (2.24)

    а в теореме Биркгоффа




    (2.25)

    за исключением множества значений х меры (или вероятности) 0. Аналогичные результаты имеют место в непрерывном случае. Это служит достаточным обоснованием производимой Гиббсом замены фазовых и временных средних.

    Для случая, когда преобразование Т или группа преобразований Тλ не являются эргодическими, фон Нейман показал, что при очень общих условиях они могут быть сведены к эргодическим составляющим. Это значит, что, отбросив множество значений х нулевой меры, Е можно разбить на конечное или счетное множество классов Еn и континуум классоd Е(у), таких, что на каждом Еn и Е(у) устанавливается мера, инвариантная при Т и Тλ. Все эти преобразования эргодические, и если S(y)пересечение множества S с Е(у), Snпересечение множества S с Еn, то




    (2.26)

    Другими словами, вся теория сохраняющих меру преобразований может быть сведена к теории эргодических преобразований.

    Заметим мимоходом, что вся эргодическая теория применима и к более общим группам преобразований, [c.113] чем те, которые изоморфны с группой сдвигов по прямой. В частности, ее можно применить к группе сдвигов в п измерениях. Для физики важен случай трех измерений. Пространственным аналогом равновесия во времени служит пространственная однородность и такие теории, как теория однородного газа, жидкости или твердого тела основанные на применении трехмерной эргодической теории. Между прочим, примером неэргодической группы преобразований сдвига в трех изменениях может служить множество сдвигов смеси раздельных состояний, таких, что в данный момент существует то или другое состояние, но не их смесь.

    Одним из кардинальных понятий статистической механики, получившим также применение в классической термодинамике, является понятие энтропии. Энтропия – это прежде всего свойство областей фазового пространства; она выражается логарифмом от их меры вероятности. Например, рассмотрим динамику п частиц, находящихся в сосуде, который разделен на две части: А и В. Если m частиц находится в А и п–m в В, то это характеризует некоторую область в фазовом пространстве, имеющую определенную меру вероятности. Логарифм этой меры есть энтропия распределения “m частиц в А, п–m в В”. Большую часть времени система будет пребывать в состоянии, близком к состоянию наибольшей энтропии, в том смысле, что если комбинация “m1 в А, п–m1 в В” имеет наибольшую вероятность, то большую часть времени примерно m1 частиц будет в А и примерно п– m1 в В. Для систем с большим числом частиц и состояниями, еще остающимися в пределах практической различимости, это значит, что если взять состояние с энтропией ниже максимальной и наблюдать, что произойдет, то энтропия почти всегда возрастает.

    В обычных термодинамических задачах о тепловом двигателе мы имеем дело с условиями, когда в больших областях, скажем в цилиндре двигателя, существует грубое тепловое равновесие. Состояния, для которых мы исследуем энтропию, уже являются состояниями максимальной энтропии для данной температуры и объема, где речь идет о немногих областях фиксированных объемов и температуры. Даже при более тонких рассмотрениях тепловых двигателей, в частности двигателей [c.114] типа турбины, где газ расширяется гораздо более сложным образом, чем в цилиндре, эти условия не изменяются очень сильно. Мы все еще может говорить с весьма хорошим приближением о местных температурах, хотя температура определима точно лишь в состоянии равновесия и методами, предполагающими такое равновесие. Но в живом веществе мы уже не. можем предполагать даже этой грубой однородности. В строении белковой ткани, которое показывает электронный микроскоп, наблюдается чрезвычайная определенность и тонкость организации, и физиология такой ткани должна обладать соответственно тонкой организацией. Эта тонкость гораздо больше, чем у пространственно-временной шкалы обычного термометра, и потому температуры, измеряемые обычными термометрами в живых тканях, представляют грубые средние величины, а не истинные термодинамические температуры. Гиббсова статистическая механика может оказаться довольно адекватной моделью того, что происходит в живом теле; картина, подсказанная обычным тепловым двигателем, – заведомо нет. Тепловой коэффициент полезного действия мышц почти ничего не значит и, уж конечно, он не значит того, что он, казалось бы, должен значить.

    Очень важное значение в статистической механике имеет идея максвеллова демона. Представим себе газ, в котором частицы движутся с распределением скоростей, остающимся в статистическом равновесии при данной температуре. Для идеального газа это будет распределение Максвелла. Пусть наш газ заключен в твердый сосуд с поперечной стенкой, снабженной небольшим отверстием; отверстие закрывается дверцей, приводимой в действие привратником – человекоподобным демоном или миниатюрным механизмом. Когда частица со скоростью выше средней подходит к дверце из отделения А или частица со скоростью ниже средней подходит к дверце из отделения В, привратник открывает дверцу и частица проходит через отверстие; когда же частица со скоростью ниже средней подходит из отделения А или частица со скоростью выше средней подходит из отделения В, дверца закрывается. Таким образом, частицы большей скорости сосредоточиваются в отделении В, а в отделении А их концентрация уменьшается. Это вызывает очевидное уменьшение энтропии, [c.115] и если соединить оба отделения тепловым двигателем, мы, как будто, получим вечный двигатель второго рода13.

    Легче отвергнуть вопрос, поставленный Максвеллом, чем ответить на него. Самое простое – отрицать возможность подобных существ или устройств. При строгом исследовании мы действительно найдем, что демоны Максвелла не могут существовать в равновесной системе, но если мы примем с самого начала эту невозможность и не будем пытаться доказать ее, то упустим прекрасный случай узнать кое-что об энтропии и о возможных физических, химических и биологических системах.

    Чтобы демон Максвелла мог действовать, он должен получать от приближающихся частиц информацию об их скорости и точке удара о стенку. Независимо от того, связаны ли эти импульсы с переносом энергии или нет, они предполагают связь между демоном и газом. Но закон возрастания энтропии справедлив для полностью изолированной системы и неприменим к неизолириванной части такой системы. Поэтому мы должны рассматривать энтропию системы газ – демон, а не энтропию одного газа. Энтропия газа есть лишь компонент общей энтропии более широкой системы. Можно ли найти другие, связанные с демоном компоненты, входящие в общую энтропию?

    Без малейшего сомнения, можно. Демон способен действовать лишь на основании принимаемой информации, а эта информация, как мы увидим в следующей главе, представляет собой отрицательную энтропию. Информация должна переноситься каким-то физическим процессом, например какой-то формой излучения. Можно вполне допустить, что эта информация переносится на очень низком энергетическом уровне и что перенос энергии от частицы к демону в течение продолжительного времени имеет гораздо меньшее значение, чем перенос информации. Но по законам квантовой механики [c.116] нельзя получить информацию о положении или импульсе частицы, а тем более о том и другом без воздействия на энергию исследуемой частицы, причем это воздействие должно превышать некоторый минимум, зависящий от частоты света, применяемого для исследования. Поэтому во всякой связи необходимо участвует энергия, и система, находящаяся в статистическом равновесии, должна находиться в равновесии как по отношению к энтропии, так и по отношению к энергии. В конечном счете максвеллов демон будет подвержен случайному движению, соответствующему температуре окружающей среды, и, как говорит Лейбниц о некоторых монадах, будет получать большое число малых впечатлений, пока не впадет в “головокружение” и не потеряет способность к ясным восприятиям. По существу, он перестанет действовать как максвеллов демон.

    Тем не менее до того как демон собьется с толку, может пройти немалое время, и оно может оказаться столь продолжительным, что мы вправе называть активную фазу демона метастабильной. Нет оснований полагать, что метастабильные демоны в действительности не существуют; напротив, вполне возможно, что энзимы являются метастабильными максвелловыми демонами, которые уменьшают энтропию, пусть не разделением быстрых и медленных частиц, а каким-нибудь другим эквивалентным процессом. Мы вполне можем рассматривать живые организмы, как и самого Человека, в этом свете. Без сомнения, энзим и живой организм одинаково метастабильны: стабильное состояние энзима наступает, когда он перестает действовать, а стабильное состояние живого организма наступает с его смертью. Все катализаторы в конце концов отравляются, ибо они изменяют лишь скорости реакций, но не меняют истинного равновесия. Тем не менее и катализаторы, и человек имеют настолько определенные состояния метастабильности, что эти состояния можно считать относительно постоянными.

    Я не хотел бы кончить эту главу, не сказав, что эргодическая теория – гораздо более обширный предмет, нежели здесь изложено. В некоторых новейших направлениях эргодической теории мера, остающаяся инвариантной при группе преобразований, определяется непосредственно самой группой, а не задается заранее. [c.117] В особенности я должен упомянуть работы Крылова и Боголюбова и некоторые работы Гуревича и японской школы.

    Следующая глава посвящена статистической механике временных рядов. В этой области условия также очень далеки от условий, принимаемых статистической механикой для тепловых двигателей, и поэтому они весьма хорошо могут служить моделью того, что происходит в живых организмах. [c.118]

    Далее:
    III. ВРЕМЕННЫЕ РЯДЫ, ИНФОРМАЦИЯ И СВЯЗЬ


    К оглавлению
    1   ...   5   6   7   8   9   10   11   12   ...   26


    написать администратору сайта