Ядов В. Стратегия социологического иследования. I некоторые проблемы теории и методологии социологических исследований
Скачать 13.39 Mb.
|
2. ОБЩАЯ ХАРАКТЕРИСТИКА ШКАЛПрименяют различные классификации измерительных эталонов. Мы будем пользоваться наиболее распространенной — континуальной классификацией (схема 7), в которой шкалы упорядочены по мере повышения их способности удовлетворять требованиям более многообразных операций с числами.11 11 О типах шкал более подробно см. [112, 129] Здесь выделено пять классов шкал, причем названия классов часто двоякие: более полные и сокращенные. Часто шкалам даются "собственные" имена по фамилии изобретателя (например, шкалы Гуттмана, Терстоуна, Гилфорда, Богардуса, Лайкерта и др.), но все они укладываются в предложенную классификацию. Далее следует запомнить, что все эти шкалы предназначены для квантификации одномерных распределений, т. е. измерения некоторой протяженности в одном и только в одном континууме свойств. Фактически же нередко пользуются многомерными измерениями, моделирующими объект (см. гл. 5, § 1). Простая номинальная шкала Номинальная шкала служит предпосылкой всех шкальных процедур. Она устанавливает отношения равенства между явлениями, которые включены в один класс. Пункты шкалы — эталоны качественной классификации свойств. Например, (А) рабочие ручного труда, не требующего специальной подготовки; (В) рабочие ручного труда высокой квалификации; (С) рабочие, занятые на механизированном оборудовании, средней квалификации; (D) рабочие механизированного труда высокой квалификации; (Е) автоматчики без навыков наладки; (F) пул ьтовики-наладчики. В этой шкале, каждому из пунктов которой дается детальная эмпирическая интерпретация (по индикаторам конечного перечня соответствующих профессий), интуитивно угадывается некоторый порядок: группы рабочих перечислены по мере повышения механизации труда и, возможно, по мере роста квалификации. Однако интуиция — не доказательство. Шкала остается неупорядоченной. Более явный пример — группировка по мотивам увольнения с работы: (а) не устраивал заработок; (b) неудобная сменность; (с) плохие гигиенические условия труда; (d) неинтересная работа и т. д. Упорядочить эти пункты невозможно: они не располагаются в континуум. Символическая запись номинальной неупорядоченной шкалы такова: (А) ^ (В) ^ (С) ^... ^ (К), где знак ^ означает дизъюнкцию (либо—либо). Операции с числами для номинальной шкалы следующие. 1. Нахождение частот распределения по пунктам шкалы с помощью процентирования или в натуральных единицах. Нетрудно подсчитать численность каждой группы и отношение этой численности к общему ряду распределения (частоты). 2. Поиск средней тенденции по модальной частоте. Модальный (Мо) называют группу с наибольшей численностью. Эти две операции (1) и (2) уже дают представление о распределении социальных характеристик в количественных показателях. Его наглядность повышается отображением в диаграммах (рис. 6, где А — модальная группа). Во всех трех случаях за 100% принята общая численность обследованных. Диаграмма 6, а позволяет, однако, отразить распределения, в которых сумма процентов превышает 100, т. е. некоторые обследуемые могут попасть в несколько секций шкалы одновременно (например, совмещают различные виды деятельности). 3. Самым сильным способом количественного анализа является в данном случае установление взаимосвязи между рядами свойств, расположенных неупорядоченно. С этой целью составляют перекрестные таблицы (схема 8). Помимо простой процентовки, в таблицах перекрестной классификации можно подсчитать критерий сопряженности признаков по Пирсону: хи-квадрат (х2) — простейший показатель обоснованности вывода о наличии или отсутствии связи между сопоставляемыми характеристиками, т. е. связанности качественных классификаций. Коэффициент Чупрова (Т-коэффициент) позволит по той же таблице определить напряженность связи, если хи-квадрат показывает, что она имеет место.12 12 Об использовании различных коэффициентов при работе с неупорядоченными номинальными шкалами см. [218, С. 189—172, 189—199]. Интересен метод, предложенный С. В. Чесноковым, который позволяет анализировать данные, фиксированные в номинальных шкалах, используя относительно "естественный" язык представления результатов, хорошо доступных неспециалистам [285]. Частично упорядоченная шкала Эта шкала служит для установления отношений равенства между явлениями в каждом классе и отношений последовательности в терминах ">" или "<" между несколькими* но не всеми классами (минимум двумя из п классов, где п>2). Она обычно используется как промежуточный этап при разработке полностью упорядоченных шкал. Иногда, однако, ранжировать весь ряд не удается. Рис. 6. Виды диаграмм распределения качественных признаков в номинальной неупорядоченной шкале: а — столбиковая диаграмма; 6 — ленточная диаграмма; в — секторная диаграмма; А, В, С, D и т. д.— отдельные качественные признаки, например, профессионально-квалификационные группы работников, отношение к политическим партиям и т. д. Так, из приведенного выше примера с группами по функциональному содержанию труда возьмем позиции (А), (D), (Е) и (F). Можно утверждать, что измеренные по двум параметрам (механизация и квалификация) позиция (А) ниже позиции (F),так как в первом случае оба параметра имеют низкий уровень» во втором — высокий. Позиция (К) явно выше, чем (А), и ниже, чем (F). Позиция (Е) — в одинаковом отношении к (А) и (F). Но отношение между (D) и (Е) установить трудно, так как для этого надо приравнять ранг по механизации рангу по квалификации, что невозможно сделать без специальных исследований. Значит, позиции (D) и (Е) несопоставимы в понятиях "больше"—"меньше". Такая зависимость описывается фигурой Здесь соединительные линии обозначают сопоставимость рангов и указывают их соотношения (>и<), отсутствие связи (.D) ...(E) указывает на то, что позиции несопоставимы. Операции с числами для данной шкалы следующие. 1. Все операции, перечисленные для неупорядоченной номинальной шкалы. 2. С каждым из полностью упорядоченных отрезков ряда можно обращаться как с полностью упорядоченной шкалой наименований. Полученные по отрезкам данные сравнивают в однозначных показателях по модальным группам или коэффициентам корреляции рангов. Провалы в частично упорядоченной шкале объясняются тем, что признак континуальной классификации не выдержан строго или использовано два континуума, отношение между которыми плохо изучено. В нашем примере с группами по содержанию труда можно перевести шкалу в полностью упорядоченную, если прибавить к двум имеющимся третий, "сквозной" критерий. Но практически данный вид шкалы используется крайне редко. Порядковая шкала Полностью упорядоченная шкала наименований устанавливает отношения равенства между явлениями в каждом классе и отношения последовательности в понятиях ">" и "<" между всеми без исключения классами. Упорядоченные номинальные шкалы общеупотреби-мы при опросах общественного мнения. С их помощью измеряют интенсивность оценок каких-то свойств, суждений, событий, степени согласия или несогласия с предложенными утверждениями. Вот обычные наименования пунктов таких шкал: "вполне согласен", "пожалуй, согласен", "затрудняюсь ответить", "пожалуй, не согласен", "совершенно не согласен"; или: "уверен, что так", "думаю, что так", "затрудняюсь сказать", "думаю, что не так", "уверен, что не так"; или: "целиком одобряю", "одобряю в основном", "затрудняюсь сказать", "в основном не одобряю", "совершенно не одобряю"; или: "так всегда бывает", "так бывает иногда", "бывает и так, и иначе", "так обычно не бывает", "так никогда не бывает"; или: "вполне удовлетворен", "удовлетворен", "скорее удовлетворен, чем не удовлетворен", "затрудняюсь сказать", "скорее не удовлетворен, чем удовлетворен**, "не удовлетворен", "совершенно не удовлетворен"; или: "это очень важно", "это важно", "трудно сказать, важно это или нет", "это неважно", "это не имеет никакого значения" и т. п. Упорядоченные номинальные шкалы имеют и более сложные конструкции (например, шкала Гуттмана, которую мы рассмотрим ниже), а в простейшем варианте являются составными элементами многих мерительных операций, в особенности методов суммирования оценок по ряду шкал (см. операции с числами, пункт 2). Весьма часто употребляемая разновидность шкал этого типа — ранговые. Они предполагают полное упорядочение каких-то объектов от наиболее к наименее важному, значимому, предпочитаемому. Например, можно ранжировать соотносительную важность тех или иных методов решения общественной проблемы, предпочтения тех или иных действий ради достижения желаемой цели, какие-то ценностные суждения и т. д. Задание на ранжирование респонденту (или эксперту) обычно формулируется так: "Из перчисленных ниже суждений (возможных решений некоторой проблемы...) выберите самое для Вас предпочтительное, затем — наименее предпочтительное, а остальные расположите от первого к последнему". Далее предлагаются объекты для ранжирования и указывается место, где следует приписать нужный ранговый порядок: Указание в скобках слева значения рангов — результат работы опрашиваемого. В опросном листе обозначено лишь место (оставлена линейка) для приписывания ранга каждому объекту. Важно иметь в виду, что при обработке данных шкала в цифровом выражении может быть "перевернута" в обратном порядке, т. е. последнему, низшему рангу можно приписать наименьшее числовое значение — 1, а первому — наибольшее. Тогда последовательность 1, 2,... и т. д. будет соответствовать возрастанию значимости объектов. Полезно не забывать о том, что численность объектов для ранжирования не может быть слишком большой, скажем — 15. В противном случае данные ранжирования крайне неустойчивы. Кроме того, в любом варианте более устойчивы первые и последние ранги (при повторных опросах опытных групп они обычно приписываются тем же объектам), а срединная зона, как правило, менее устойчива. Поэтому для повышения надежности данных ранжирования следует после проведения пробы на повторный опрос небольшой группы испытуемых (микромодель будущей выборочной совокупности) объединить в один ранг те из них, которые обнаружат наибольшую неустойчивость. Предположим, что после второго замера произошли сдвиги рангов: 1—2, 3—5, 6—10, 11—13 и 14—15. Иными словами, многие из тех, кто, например, первоначально приписывал данному объекту 6-й ранг, во втором замере приписали ему 7-й, 8-й, 9-й или даже 10-й. Определив неустойчивые области, мы можем в основном исследовании, не изменяя инструкции для ранжирования, при анализе данных преобразовать 15-ранговую шкалу в 5-ранговую, как показано на схеме, т. е. обеспечить большую устойчивость и надежность данных ранжирования (схема 9).13 13 Подробнее см. [232. C. 74-77] Помимо того, что оценка уровня устойчивости итогов ранжирования — способ повышения надежности шкалы, это к тому же и показатель содержательного характера. Объекты, в отношении которых опрашиваемые неуверены (ранги таких объектов смещаются), по-видимому, обладают для них меньшей субъективной значимостью, выпадают из сферы повседневных интересов. Нередко приходится ранжировать множество объектов, существенно больше 15. Объединение рангов здесь также помогает повысить устойчивость, но одновременно резко снижает чувствительность шкалы. В таком случае можно прибегнуть к несколько более трудоемкой для анализа, но более простой для респондента и более надежной процедуре ранжирования методом парных сравнений [75; 193; 231; 265]. Ранжирование состоит в том, что предлагается попарно сопоставить предпочтительность объектов (пусть очень обширного списка) путем всех возможных их парных комбинаций. Допустим, что у нас имеется 25 кандидатов, участвующих в выборах, ранжировать которых задача психологически почти невыполнимая. Тогда при массовом опросе накануне выборов (во время самих выборов избиратель просто голосует "да—нет" в отношении каждого кандидата) предложим следующее задание: "Из всех перечисленных попарно кандидатов в каждой из пар выберите того, который кажется Вам более предпочтительным из данной пары. Не пропускайте ни одной строчки. Предпочитаемого кандидата обведите в кружок" (схема 10). Поскольку объекты А и Е имеют равное число выборов (по 1), им приписывается одинаковый ранг, а так как число перестановок оказывается весьма большим, то одинаковые значения получат несколько объектов. Доказано, что результаты такого ранжирования весьма устойчивы.14 И тогда в нашем примере основания для прогноза исхода реальных выборов становятся более надежными (хотя они будут зависеть и от других, неучтенных здесь обстоятельств).15 14 Надежность парных сравнений существенно повышается, если предлагается оценить предпочтительность одного из двух объектов не дихотомически (либо-либо), а в пяти-семибалльной шкале. Такой способ применил В. А. Лосепков при разработке методики изучения социальных установок [235. С. 220— 222]. 15 См. об этом на с. 470. Операции с числами. Прежде всего следует помнить, что интервалы в школе не равны, поэтому числа обозначают лишь порядок следования признаков. И операции с числами — это операции с рангами, но не с количественным выражением свойств в каждом пункте. 1. Числа поддаются монотонным преобразованиям: их можно заменить другими с сохранением прежнего порядка (именно поэтому шкалы данного типа называют также порядковыми). Так, вместо ранжирования от 1 до 5 можно упорядочить тот же ряд в числах от 2 до 10 или от (—1) до (+1). Отношения между рангами останутся неизменными: Это свойство важно в тех случаях, когда данные, измеренные шкалами с различным числом интервалов, приходится приводить к "общему знаменателю", т. е. выражать в одной шкале с постоянной величиной заданных интервалов. 2. Суммарные оценки по ряду упорядоченных номинальных шкал — хороший способ измерять одно и то же свойство по набору различных индикаторов. Такое суммирование, предложенное Лайкертом, получило название "кафетерий" ("кафетерий" — это как бы набор блюд в меню с подсчетом общей стоимости обеда). Рассмотрим пример суммирования оценок по шкале, измеряющей отношение женщин к детям [353. С. 134—137]. Опрашиваемых просят указать вариант ответа на каждое суждение, расположенное по вертикали (схема 11). Прежде чем суммировать итоговый балл, следует оценить порядок всех пунктов десяти шкал, составляющих "кафетерий". Очевидно, что пункты 1, 2, 5, 9 и 10 выражают положительное отношение к детям, а пункты 3, 4, 6, 7, 8— отрицательное. Важно, чтобы число позитивных и негативных суждений было одинаковым, или, как в данном случае, различалось не более, чем на 1/10.Тогда для первого ряда ответов "совершенно согласна" оценивается баллом "5" и "совершенно не согласна" — баллом "1**, а для второго ряда — в обратном порядке. 169 Общая оценка для нашего примера складывается из баллов по строкам: 3. Для работы с материалом, собранным по упорядоченной шкале, можно использовать, помимо модальных показателей, поиск средней тенденции с помощью медианы (Me), которая делит ранжированный ряд пополам. Медиана применяется для обнаружения порогов на шкале: справа и слева от нее располагаются признаки, тяготеющие к противоположным полюсам (см. также пример в табл. 17). 4. Наиболее сильный показатель для таких шкал — корреляция рангов (по Спирмену — р или по Кендал-лу — R). Ранговые корреляции указывают на наличие или отсутствие функциональных связей в двух рядах признаков, измеренных упорядоченными номинальными шкалами. Метрическая шкала равных интервалов Класс метрических шкал, в отличие от номинальных, устанавливает отношение между пунктами не просто в понятиях больше-меньше, но позволяет фиксировать величину интервала. Заметим, однако, что использование метрических шкал в социологическом исследовании случается далеко не так часто, как порядковых. Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно избранной величины. Главная трудность в построении таких шкал — обоснование равенства или разности дистанций между пунктами. Процедуры такого доказательства мы рассмотрим в следующем разделе на примере шкалы Тёр-стоуна. Неопытные исследователи принимают иногда за интервальную шкалу шкалы балльных оценок. Но это псевдометрическая шкала. Так, один из вариантов псевдошкалы с равными интервалами — "термометр общественного мнения". Это шкала в 100 делений, где крайние точки (100 и 0) словесно интерпретируются. Например, "если вы категорически согласны с приведенным суждением, укажите свое положение на термометре как 100°", "если вы категорически не согласны, укажите 0°. В действительности, нет оснований полагать, что лица, отметившие по термометру 35° и 42°, столь же различаются в своих оценках, как отметившие 45° и 52°. Интервал в Т (42°— 35° = 7° (52°— 45° = 7°) — чисто условный, так как одни люди обладают высокой способностью дифференцировать свои оценки, а другие вовсе не могут различать нюансы. Так что данная шкала меряет не что иное, как те же ранги, что и упорядоченная номинальная, каковой она фактически и является. В отличие от "термометра" общественного мнения шкалы Тёрстоуна имеют веские основания равенства интервалов, в чем мы дальше сможем убедиться. Операции с числами в интервальной метрической шкале богаче, чем в номинальных шкалах. 1. Числа в таких шкалах остаются неизменными после линейных преобразований: у=ах+b. Начало (точка отсчета) на шкале избирается произвольно (b); также произвольно избирается размерная величина (а). Например, максимальный балл по шкале у=21, если размерная величина а=2, число интервалов x=10 и отсчет начинается с b=1, т. е. ах+b=у, или 2x10+1=21. Ранги переменных на этой шкале равны в отношении "х" и "у". Это значит, что можно свободно менять точку отсчета и числовое значение размерной величины. Например, от шкалы в 100 делений можем легко перейти к шкале с любым другим числом делений, притом отсчет можно начать с любой точки натурального ряда чисел. Так обычно переходят от измерения температуры по Цельсию к термометру по Реомюру или Фаренгейту — ранги температур остаются прежними. 2. Появляются новые возможности корреляционного и регрессионного анализа. Вместо рангового коэффициента можно использовать более чувствительный коэффициент парной корреляции по Пирсону (г) и коэффициенты множественной корреляции. Последние хороши тем, что позволяют соотнести (оценить) изменения в одной переменной с изменениями в другой или в целом ряде других переменных. Шкала пропорциональных оценок Здесь мы имеем дело с идеальной или абсолютной метрической шкалой, напоминающей шкалу равных интервалов, но с одним преимуществом: отсчет в этой шкале начинается не с произвольной точки, а с экспериментально установленного нулевого пункта. Для таких шкал применимы решительно все операции с числами, так как можно определить, на сколько или во сколько данный пункт на шкале превышает другой. Подобные шкалы приняты в точных науках, где нулевой пункт (точка отсчета — из чего и происходит название "точные науки") экспериментально зафиксирован. Идеальные метрические шкалы успешно применяются для измерения некоторых физиологических и психических свойств человека. Точка отсчета определяется в этих случаях как порог восприятия и порог насыщения. Известно, например, что существует среднестатистический порог восприятия звуковых колебаний. То же относится и к некоторым психическим реакциям людей (например, порог различения сходных фигур). В социологии шкалы такого рода имеют весьма ограниченное применение. Ими пользуются для измерения протяженностей во времени и пространстве, для отсчета натуральных единиц (денежных единиц, продуктов деятельности» поступков). Во всех этих случаях нулевой пункт четко фиксируется. Что касается измерения качественных свойств социальных явлений, поиск нулевого пункта как точки отсчета заведомо обречен на неудачу. Как правило, социальные процессы и характеристики варьируют от ситуации к ситуации столь сильно, что нулевой пункт может быть установлен только как среднестатистическая величина в большой массе событий. Операции с числами, как уже говорилось, для идеальных шкал не имеют никаких ограничений. Можно использовать все доступные математике операции с натуральными числами. Теперь, ознакомившись с различными типами шкал, мы могли бы заметить, что собственно измерение начинается как будто бы с введения обоснованной метрики в шкалах равных интервалов (типа шкал Гуттмана) и в шкалах пропорциональных оценок. Номинальные упорядоченные шкалы предполагают ранжирование объектов (свойств), а простые номинальные шкалы есть лишь их классификация. Однако классификация в номинальной шкале, а тем более ранжирование объектов — это тоже измерение, так как с помощью данных процедур мы фиксируем меру, протяженность, континуум. В социологии, а также в психологии приходится, как правило, довольствоваться такими элементарными способами первичного измерения. Но этого, в общем, достаточно для того, чтобы фиксировать тенденцию изучаемого социального процесса. На большее социолог не претендует, да вряд ли и должен претендовать. 3. ПОИСК ОДНОНАПРАВЛЕННОГО КОНТИНУУМА В ШКАЛАХ ГУТТМАНА (УПОРЯДОЧЕННАЯ НОМИНАЛЬНАЯ ШКАЛА)Поиск одномерного континуума свойств некоторой неявной (латентной) характеристики по внешним ее проявлениям — довольно сложная задача. Один из вариантов ее решения предложил Луи Гуттман [64]. Шкала Гуттмана предназначена для измерения установок, т. е. субъективного отношения к объекту, и обладает двумя важными достоинствами: кумулятивностью и репродуктивностью. Такие арифметические действия, как сложение, умножение и возведение в степень, ранжированы по кумулятивной, т. е. накопительной, шкале. Тот, кто умеет возводить в степень, непременно умеет умножать и складывать. Но кто умеет складывать, вовсе не обязательно умеет умножать (не говоря о возведении в степень). С принципом кумулятив-ности связана и реп род уктивн ость. Зная максимальные математические возможности некоего человека, можно надежно предсказать его возможности в менее ответственном испытании, причем все это относится к одному и только одному параметру. В нашем случае — это накопительные операции с натуральными числами (а не что-то иное). Рассмотрим вымышленный пример построения шкало-граммы для измерения социальных установок людей по поводу перехода на новую систему организации труда. Предлагая опрашиваемым серию суждений, мы просим высказать свое отношение к каждому из них. При этом несогласие с суждением, в котором критикуется новая система, наряду с согласием по поводу благоприятствующих ей мнений оценивается как положительное отношение и дает респонденту 1 балл в суммарном показателе. В следующем списке согласие с суждениями 1, 2, 5, 6 и несогласие с суждениями, 3, 4, 7, 8 свидетельствуют о благоприятном отношении к новой системе организации (обратите внимание: численность позитивных и негативных Утверждений должна быть равной). Список исходных суждений для построения шкалограммы 1. Новая система организации, несомненно, способствует повышению производительности труда. ----Согласен (1)----Не согласен (0) 2. В целом эта система лучше той, что применялась прежде. ----Согласен (1)----Не согласен (0) 3. Некоторые стороны новой системы организации плохо продуманы. ----Согласен (0)----Не согласен (1) 4. Как и любая другая система организации, новая система имеет немало минусов. ----Согласен (0)----Не согласен (1) 5. Новая система удачно сочетает материальное и моральное стимулирование работников. ----Согласен (1)----Не согласен (0) 6. Доводы в пользу новой системы очень убедительны. ----Согласен (1)----Не согласен (0) 7. В прежней системе было немало хорошего, что утрачено п новой организации. ----Согласен (0)----Не согласен (1) 8. Преимущества новой системы организации совершенно не ясны. ----Согласен (0)----Не согласен (1) Если приписать каждому положительному ответу 1 балл и каждому отрицательному — нулевой, то человек, максимально благоприятно оценивающий новую систему организации, получит 8 баллов, а противник этой системы — 0 баллов. Остальные распределяются в промежутках между двумя полюсами шкалограммы. Процедура отработки шкалограммы состоит в следующем [353. С. 143—157]. (1) Отбирается экспериментальная группа, которой предлагают высказаться по поводу суждений, предположительно образующих континуум. В составе группы должны быть представители обследуемой категории населения. Численность группы — около 50 человек (в нашем примере для простоты возьмем 15 человек). (2) Высший балл по шкале определяется суммированием оценок по каждому ответу. В нашем примере для каждого суждения возможны оценки 1 или 0. В более сложных шкалах предлагается высказать полное или частичное согласие (несогласие) с каждым суждением: 4. Совершенно согласен. 3. Согласен. 2, Не знаю, не могу ответить. 1. Не согласен. 0. Категорически не согласен. В этом случае высшая оценка в шкалограмме из 8 суждений составит 8x4=32, а низшая, как и прежде, = 0. (3) Данные опроса экспериментальной группы располагаются в матрицу так, чтобы упорядочить опрошенных по числу набранных баллов от высшего к низшему (схема 12). Знак "+" означает благожелательное отношение к объекту оценивания, "—** означает неблагожелательное отношение. Анализируя полученную шкалограмму, видим, что она весьма близка к идеальному варианту. Например, балл 3 для суждения № 5 определенно связан с положительным отношением к новой системе по суждениям 1, 5 и 7; балл 6 по суждению № 10 означает благоприятное отношение по пунктам 1, 2, 4, 5, 7 и 8. Не очень удачны пункты 3 и 7. С суждением №3 ("Некоторые стороны новой системы организации плохо продуманы") почти никто не согласен, что дает каждому по дополнительному баллу. Зато с пунктом 7 ("В прежней системе было немало хорошего, что утрачено в новой организации") подавляющее большинство согласно, и это отнимает у них по баллу. Оба пункта, следовательно, плохо дифференцируют опрошенных. Наиболее удачны суждения №2 и 4, которые делят респондентов на сторонников и противников новой системы организации. (4) Для очевидности шкалограммы преобразуем таблицу так, чтобы получить идеальную "лесенку" (схема 13). Идеальная шкалограмма предполагает, что ответ на один из вопросов должен повлечь за собой определенный ответ на следующий за ним по нисходящей ветви. Значит, первая задача состоит в том, чтобы выяснить, действительно ли ответы на эти вопросы образуют одномерный континуум. Число лиц в экспериментальной группе достигает 50-100 человек, а число пунктов также достаточно велико. Кроме того, на каждый вопрос можно было бы дать пять ответов (от "совершенно согласен" до "совершенно не согласен"). Поэтому вращение рядов шкалограммы — утомительная операция. Гуттман, не имея компьютера, разработал несколько технических приемов. Один из них: деревянная доска, на которой передвигаются цветные фишки, соответствующие позитивным— негативным ответам. Конечно, при современных возможностях использовать компьютер все эти сложные перестановки максимально упрощаются (в SPSS для этого есть специальная программа). После упорядочения респондентов, как показано в схеме 12, упорядочиваются пункты от максимума к минимуму благожелательных ответов. Внутри пункта производится сортировка субъектов так, чтобы набравшие максимум баллов располагались выше тех, кто набрал следующее за ними число баллов. При ручной сортировке в карточку респондента заносятся ответы "за" и "против" каждого пункта информации, а также, общее число набранных баллов. Первая сортировка производится по колонке № 1 на всю выборку, затем — по остальным колонкам, т. е. вопросам. Так определяется порядок вопросов в матрице от набравшего максимум до набравшего минимум благожелательных ответов. Вторая сортировка — внутри данной колонки ранжируются субъекты, набравшие максимум—минимум баллов. Составляется матрица, которую анализируем с точки зрения наличия континуума в ответах. Вернемся к нашей шкалограмме. На схеме 13 видно, что имеется 6 случаев отклонения от идеального распределения: три благоприятных суждения выпали в "запретную" зону справа и три неблагоприятных суждения выпали в "запретную" зону слева. Используем пример с умением считать: перед нами тот случай, когда умеющий умножать почему-то не умеет складывать, а не умеющий умножать умеет возводить в степень. Иными словами, это — парадокс. (5) Идеальную шкалограмму мы не получили. Но это вообще маловероятно. Следует стремиться к некоторому оптимальному варианту. Такой вариант задается числом допустимых отклонений в ответах экспериментальной группы. Подсчет допустимого числа отклонений производится путем исчисления коэффициента репродуктивности шкалограммы: R = 1 – n \ KN где R — коэффициент репродуктивности, К — число пунктов (в нашем случае = 8), по которым следует дать ответ, N — число испытуемых (в нашем случае =15), n — число ошибочных ответов, которые располагаются справа или слева от идеальной вертикали. Коэффициент желательной репродуктивности задается исследователем как надежный интервал допустимой ошибки. Желательно получить не более 10% ошибочных ответов. Тогда коэффициент репродуктивности должен выражаться числом 0,90. Число допустимых ошибок подсчитываем, преобразуя формулу: п = (1 - R)(KN). В нашем примере для R=0,90 при 8 суждениях и 15 испытуемых число допустимых ошибок составит (1 — — 0,90)х(8х15)=12, т.е. существенно меньше, чем оказалось в реальности. Фактический коэффициент репродуктивности нашей шкалы достаточно высок и равен 0,95. Можно повысить этот коэффициент до 0,98, если убрать суждение № 8, по которому имеются три ответа, отклоняющиеся от идеального континуума. Тогда: В случае, если на каждое суждение предполагается ответ по шкале в пять пунктов (4 = "совершенно согласен" ... О = "совершенно не согласен"), коэффициент репродуктивности может быть улучшен и за счет выбрасывания суждений, дающих много отклоняющихся ответов, и за счет укрупнения дробной шкалы согласия—несогласия с суждением. (6) Шкала с коэффициентом репродуктивности не менее 0,90 готова. В массовом обследовании все пункты шкалы тасуются случайным образом. Ранг каждого опрашиваемого определяется по сумме набранных баллов. Данные, полученные на группу, можно усреднить, подсчитав среднеарифметический ранг для этой категории лиц и сравнивая его с аналогичным средним показателем для другой категории. В нашем примере было бы интересно знать расхождение в оценках нововведений на государственных и частных предприятиях, руководителей и рядовых сотрудников. 4. ИСПОЛЬЗОВАНИЕ СУДЕЙ ДЛЯ ОТБОРА ПУНКТОВ В ШКАЛУ РАВНЫХ ИНТЕРВАЛОВ ТЁРСТОУНАВыше мы рассмотрели процедуру фиксирования одномерного континуума. Но часто возникает прямо противоположная задача: нужно измерить субъективные отношения людей к весьма сложным явлениям, причем мы либо не можем, либо не желаем расчленять это отношение по составляющим его аспектам. Как и в построении шкалограмм, речь вновь идет о поиске латентной (скрытой) характеристики по ее внешним проявлениям, но цели поиска — иные. Луи Тёрстоун [372] исходил из верной предпосылки, что психологическая установка человека на социальные объекты содержит эмоциональное отношение. Поэтому задача измерения сводится к тому, чтобы найти степень позитивной или негативной напряженности такого отношения. Процедура конструирования шкалы равных интервалов разрабатывалась Тёрстоуном по аналогии с процедурами поиска психофизиологических порогов восприятия. Представим, что перед нами множество предметов одинакового внешнего вида, но незначительно отличающихся по весу. Перебирая предметы и взвешивая их поочередно на руке, определим минимальную величину, которая ощущается как разница двух близких весов. Это и есть интервал порога восприятия тяжести. Аналогичным образом строится процедура поиска субъективного порога различения оценочных суждений в шкале Тёрстоуна. Разработка шкалы производится в несколько этапов. (1) Вначале придумывается множество суждений позитивного и негативного характера, каждое из которых выражает отношение к некоторому объекту, явлению, социальной проблеме и т. п. в зависимости от поставленной задачи. Например, это могут быть суждения, выражающие отношение к соблюдению законности: "Законы следует соблюдать во всех случаях"; "Бывают обстоятельства, когда нарушение определенного законодательного положения допустимо"; "Если бы наказания за несоблюдение законов были более строгими, нарушений бы не было"; "Я не очень беспокоюсь о нарушении закона, если никто об этом не сможет узнать" и т. д. Суждения должны быть вполне однозначны и понятны, а главное, сформулированы так, чтобы с ними не смогли согласиться люди, придерживающиеся прямо противоположных взглядов. Начальная численность таких суждений ориентировочно около 30. Для их формулировки можно привлечь представителей потенциальной аудитории опроса. (2) Суждения, записанные на отдельные карточки, предлагаются "арбитрам", в качестве каковых выступают случайным образом отобранные представители опрашиваемой аудитории. Численность судей — около 50 человек. (3) Этим арбитрам предлагается рассортировать все суждения одно за другим, последовательно в 11 групп, обозначенных буквами от А до Л. Возле картонки с буквой "А" надо поместить суждения, в которых, по мнению арбитра, выражено максимально положительное отношение к данному объекту или явлению, а возле картонки с буквой "Л" — максимально негативное. Возле картонки с буквой "Е" должны помещаться суждения нейтрального, по мнению арбитра, характера, а остальные — в зависимости от их содержания в промежутках от "А" до "Е" и от "Е" до "Л". Судей предупреждают, что не надо стараться распределить суждения по всем группам поровну, но только в зависимости от их смысла. (4) После окончания сортировки начинается тщательный анализ, с тем чтобы установить: (а) степень согласованности судейских решений и (б) "цену" каждого суждения на шкале в 11 интервалов (эта шкала найдена оптимальной). Таблица 5 Анализ распределения судейских оценок для построения шкалы равных интервалов
Анализ распределения судейских оценок производится путем исчисления медианы и отклонений от медианной точки. Подсчитаем судейские оценки для одного из суждений по табл. 5. Имея такое распределение, построим график, где по вертикали отложим кумулятивный процент, а по горизонтали — шкалу из 11 интервалов. Кривая пересекает вертикали в точках, соответствующих медианной оценке для двух соседних пунктов на шкале. Поэтому они оцениваются дробями: 3,5 или 6,5, но не 3 или 6 (рис. 7). В районе 0 — позитивный полюс, 5 — нейтральный, 11 — негативный. Медианная оценка определяется по среднему перпендикуляру на базовую шкалу из 11 пунктов. Перпендикуляр опущен из точки, разделяющей ранжированный ряд судейских решений ровно пополам. Цена суждения по медиане в нашем случае: S = 8,5. Определим, насколько единогласны судьи в своих решениях об этом суждении по квартальному отклонению (Q): Q=Va(Q3 - Q,); или для нашего примера Q=V2(9,3 - 7,3)=1,0. (5) В итоговую шкалу отбираются суждения, получившие наиболее согласованные оценки. Например, если имеются три суждения со сходной ценой (скажем, от 8,1 до 9,2) и с квартальными отклонениями, равными 1,0; 1,3; 1,5, то в итоговую шкалу отбирается суждение с Q=l,0, как получившее наиболее согласованную оценку судей. В окончательном виде шкала обычно содержит от 15 до 30 суждений, каждое из которых имеет "цену" или "вес", определенный по медиане судейских решений. Очевидно, что, коль скоро арбитраж 50 судей позволил найти пороги различения между суждениями, шкалу можно признать метрической шкалой равных интервалов с отсчетом от О. (6) Для использования в массовом опросе все суждения тасуются как игральные карты. Опрашиваемые выражают согласие или несогласие с каждым из предложенных суждений. Цена суждения в опросном листе не проставлена: веса всех суждений записаны в инструкции по обработке данных. (7) Индивидуальный ранг опрошенного по шкале Тёрсто-уна определяется как медиана весов принятых им суждений. Например, в ответах некоего лица содержится всего четыре принятых суждения (все остальные им отвергнуты) с весами (S): 4,4; 4,8; 5,1; 5,6; 6,1. Тогда ранг индивида соответствует медианной оценке 5,1. При четном числе принятых пунктов медианный ранг можно принять как среднеарифметическое интервала, в котором лежит медиана. (8) Ранговая позиция группы опрошенных определяется как среднеарифметическая рангов всей совокупности, составляющей группу. Обоснованность и устойчивость шкалы можно проверить с помощью уже известных нам приемов: использование независимого критерия, контроль по известной группе, повторное измерение с интервалом во времени. Не обязательно начинать отбор суждений со столь большого числа вариантов, как это делал Тёрстоун. Наша практика показывает, что 30—50 суждений вполне достаточны для судейского отбора, после которого определится десяток вполне приемлемых пунктов шкалы. Также не обязательно вовлекать в работу очень большое число судей: можно получить статистически устойчивые данные на 50—60 экспертах. Снижение точности замера за счет снижения дробности шкалы существенно повышает ее надежность. Если предлагать судьям расположить суждения не в 11, а в 5 интервалов, итоговая шкала будет более надежна, но менее точна. Выбор в пользу большей—меньшей точности зависит от предмета исследования и значимости гипотез, а также от того, насколько точно измеряются в нем другие переменные. Если большинство переменных измеряется по трехчленным и пятичленным шкалам, но только одна — по 11-членной шкале, и притом все переменные подлежат взаимной корреляции, в этом случае повышенная точность 11-членной шкалы — излишняя роскошь. Она не оправдывается логикой сопоставления с другими переменными. Работа с экспертами, аналогичная описанной выше, широко применяется и в других случаях, когда мы обращаемся к выборочной группе из массива обследуемых для того, чтобы глазами будущих испытуемых проверить соотносительную значимость оценок, придаваемых пунктам шкалы [232. С. 109—128]. 5. ЧЕТЫРЕ ВАЖНЕЙШИХ ОГРАНИЧЕНИЯ КВАЛИФИКАЦИИ ПЕРВИЧНЫХ СОЦИАЛЬНЫХ ХАРАКТЕРИСТИКМы рассмотрели различные приемы перевода качественных социальных признаков в их количественные выражения. Это очень ответственный момент процедуры социологических исследований. Применение количественных методов и использование статистических показателей взаимосвязи социальных явлений и процессов как бы возводит социологию в ранг подлинной "строгой" науки. Создается впечатление математической точности выводов. Между тем квантификация сложных и далеко не однозначных социальных реалий накладывает немало ограничений на собственно математические операции с их измерениями. Математик работает с простыми однозначными абстракциями, в основе которых суждение "есть— нет" (т. е. наличие—отсутствие данного свойства). Социолог обязан постоянно помнить, что в действительности скрывается за величинами и символами, которыми мы оперируем. В данном случае, мы обращаем внимание только на некоторые ограничения, связанные со специфическим видом формализации социальных данных, имея в виду наиболее распространенные и сравнительно простые приемы использования математической статистики в социологии. Первое ограничение — соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Суммируем сведения о возможностях операций с числами в описанных выше шкалах (схема 14)16 16 Здесь частично используется схема из работы С. С. Паповяпа [201. С. 60]. Более сильная шкала отличается от ближайшей к ней относительно слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы, допустимо и для сильной. Но не все, разрешимое для сильной, позволительно для слабой шкалы. Поэтому смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал: в этом случае все операции с числами должны удовлетворять требованиям, предъявляемым к относительно слабым шкалам. Конечно, это предостережение теряет смысл, если социолог не намерен статистически сопоставлять данные, измеренные разными шкалами, и рассматривает их независимо друг от друга, а также в случае иных способов анализа, например, путем множественной классификации. Второе общее ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным. На рис. 8 показаны варианты нормального и скошенного распределений, где нормальное (эталонное) обозначено пунктиром, а скошенное — сплошной линией. Нормальное гауссово распределение имеет вид симметричного колокола, у скошенного же по сравнению с нормальным в нашем случае поднят" правый и "опущен" левый конец (так называемые хвосты распределения). Для нормального распределения оценки меры рассеяния совпадают, т. е. М=Ме=Мо, а в скошенном "хвосты" распределения не влияют на среднюю арифметическую (М, другое часто встречающееся обозначение средней арифметической — х), которая сдвигается в сторону его больших значений. Возможны и бимодальные распределения, где образуются своего рода горбы, а также растянутые, как бы сплющенные. Анализ таких видов распределений должен быть особенно внимательным, так как в этом случае непригодны обычные оценки меры рассеяния. В случае существенно скошенных и тем более бимодальных распределений можно: (а) привести их к нормальному путем объединения градаций шкалы, образующих длинный "хвост" распределения. Например, значения 8,9 и 10 десятибалльной шкалы растянуты потому, что в них очень мало численности. Тогда объединим эти градации и соответственно переоценим пункты шкалы; (б) при бимодальном распределении разумно порядковую шкалу перевести в неупорядоченную. Итак, второе ограничение — особенности одномерных (не говоря уже о более сложных) распределений. Оно заключается в том, что необходимо внимательно изучать форму распределения с точки зрения его уклонения от нормального, симметричного. Третье ограничение особенно неприятно. Оно состоит в том, что в социальных процессах нередки явления, измерение которых следует производить шкалами открытого типа, где полюс наибольших значений не фиксирован и может принимать любую величину.17 17 На это указал С. Д. Хайтун [277]. См. также работу Г. Кинмбл [110]. Например, оценки размеров заработной платы, доходов в принципе должны давать нормальные и вполне допустимые скошенные распределения, так как есть социально и экономически обоснованные минимум и максимум зарплаты. Это — закрытая метрическая шкала оценок. То же самое можно сказать о численности детей в семье и т. п. явлениях. Но при оценке многих субъективных состояний и показателей человеческой активности, например, результатов научной продуктивности ученых, предельно максимальные значения трудно предположить достоверно. В негауссовых, в частности, так называемых распределениях Ципфа (рис. 9, в котором фиксированы логарифмы координат), на примере оценки числа публикаций ученых в области химии [278. С. 146] видно, что до 70% из них имеют одну публикацию, около 25% — две, 8—10% — по три или четыре публикации, но только по 0,1 и 0,2% достигают продуктивности в 20—30 публикациях. Это распределение никоим образом не описывается гауссовым "колоколом", В последнем случае численность имеющих очень мало и очень много публикаций была бы примерно равной, а большинство ученых демон стрировали бы некоторое среднее число публикаций, например, по 7—8 (в гауссовой статистике — это различные показатели центральной тенденции распределения). Однако применение негауссовых статистик в социальных науках вообще, в социологии в частности, крайне затруднительно, так как невозможно использовать закрытые шкалы, поскольку в большинстве случаев нет "естественных" эталонов измерения (число публикаций — один из примеров такого "естественного" эталона). А если нам приходится изобретать шкалу, то недопустимо оставлять открытым один из ее полюсов. Четвертое ограничение связано с особой природой социальных процессов, в которых статистические и детерминистские закономерности находятся в динамическом единстве. В определенных аспектах и на определенных отрезках времени социальные процессы вполне предсказуемы. Но во многих случаях это далеко не так, особенно в условиях социальных преобразований, кризисов социальных систем. В нестабильных системах малые внешние или внутренние воздействия способны вызвать неожиданное и неадекватное воздействию изменение. Поэтому предлагается, используя для измерения первичных характеристик шкальные процедуры, прибегать к построению стохастических динамических моделей на основе "сценариев" возможного развития определенных социальных процессов [289]. Такие сценарии прогнозируются для разных временных интервалов, например начальной и завершающей стадий, которые могут быть существенно разными по составу участвующих факторов и по характеру связей между ними. Итак, преимущества квантификации и использования жестких критериев надежности исходных данных небезусловны и могут обернуться упрощением, а то и искажением социальной реальности.18 18 На почве резкой критики жестко формальных процедур сбора и анализа данных в начале 70-х гг. в социологии возникло движение сторонников гибких или качественных методов с акцентом на понимании событий и жизни людей в большей мере, чем стремления к их строгому объяснению (см. гл. 6). Адекватные в исследовании массо-видных социальных процессов, такие приемы утрачивают свои достоинства в изучении сознательно организованных действий или "отклоняющихся" явлений, тогда как нередко именно последние дают пищу для вдумчивого социального анализа. Без таких "уклонений" социальные процессы отображаются и виде схем, лишенных жизненных красок. Строго формализованный количественный анализ имеет свои пределы (298)19, за которыми могут быть утрачены качество, глубина и полнота осмысления действительности. 19 "Пределы" — так называлась статья выдающегося отечественного социолога В. Н. Шубкина, который в 70-е гг. призвал к "гуманистической социологии", акцентирующей внимание на личностных смыслах социальных явлений и процессов. Поэтому социолог обязан хорошо владеть многообразными гибкими методами изучения общественных проблем, т. е. уметь наблюдать, строить гипотезы на основе несистематизированных впечатлений и бесед, переходя затем к более систематизированной и упорядоченной их проверке. Практические советы 1. Приступая к разработке методов и процедур исследования, вначале продумайте, какие явления, свойства и объекты реально варьируют по их интенсивности, распространенности, состояниям выраженности, а какие могут быть фиксированы лишь в качественных отображениях. 2. Определяя способ квантификации (тип шкалы), соизмеряйте его не только с природой объекта, но и с целями исследования и возможностями последующего количественного анализа: излишняя квантификация — напрасная растрата усилий, недостаточная — упущенные возможности более обстоятельного изучения объекта. 3. Не забывайте, что всегда лучше опираться на достоверные и менее детальные сведения, чем на детальные и малодостоверные: отсюда — указания к выбору приемлемого типа шкал и дробности их метрики. 4. Изящный статистический анализ полученных данных будет вводить в заблуждение и нас самих и других, если ему не предшествовала добротная проверка надежности исходных измерений и регистрации фактов в целом. 5. Самое же главное состоит в том, что количественный анализ не самоцель, но лишь средство качественного: качественный анализ предшествует квантификации, качественным анализом завершается изучение количественных распределений и связей. |