Главная страница

Учебное пособие (Интеллектулльные информационные технологии) (ТГУ). Учебное пособие (Интеллектулльные информационные технологии) (Т. Интеллектуальные информационные технологии


Скачать 3.62 Mb.
НазваниеИнтеллектуальные информационные технологии
АнкорУчебное пособие (Интеллектулльные информационные технологии) (ТГУ).doc
Дата30.05.2018
Размер3.62 Mb.
Формат файлаdoc
Имя файлаУчебное пособие (Интеллектулльные информационные технологии) (Т.doc
ТипУчебное пособие
#19788
страница1 из 8
  1   2   3   4   5   6   7   8


Тверской государственный университет



Н.А. Семенов

Интеллектуальные информационные технологии




Учебное пособие

Тверь 2016

УДК 681.3.016



Семенов, Н.А. Интеллектуальные информационные технологии: учебное пособие/Н.А. Семенов - Тверь: ТГУ, 2016. 114 с.


Учебное пособие содержит теоретические и практические аспекты теории интеллектуальных информационных систем. Материал пособия охватывает вопросы, связанные с построением экспертных систем, систем поддержки принятия решений и экономических советующих систем на основе интеллектуальных информационных технологий. Определенное внимание уделено нейросетевым технологиям и технологии построения многоагентных систем.

Предназначено для магистрантов по направлению подготовки 230700 – «Прикладная информатика в аналитической экономике».


Рецензенты: кафедра системного и экономико-математического анализа ТвГУ (зав. кафедрой, доктор технических наук, профессор
В.Н. Михно); заведующий кафедрой ЭВМ ТГТУ, доктор технических наук, профессор В.А. Григорьев.

© Н.А. Семенов, 2016

Введение
Интеллектуальные информационные технологии (ИИТ) служат инструментом для разработки интеллектуальных информационных систем (ИИС), которые являются результатом развития обычных информационных систем (ИС) и сосредоточили в себе наиболее наукоемкие технологии с высоким уровнем автоматизации не только процессов подготовки информации для принятия решений, но и самих процессов выработки вариантов решений, опирающихся на полученные ИС данные.

В пособии на основе последних достижений в области разработки ИИС рассмотрены различные модели представления знаний, методы их извлечения, нейронные сети и мультиагентные системы, определены основные разновидности ИИС в виде экспертных систем, систем поддержки принятия решений и экономических советующих систем. Кроме того, приведены сведения об инструментальных средствах разработки ИИС, некоторые из них доступны в Интернете.

Учебное пособие предназначено для магистрантов по направлению подготовки 230700 - «Прикладная информатика в аналитической экономике».
Глава 1. Интеллектуальные информационные системы

как одно из направлений теории искусственного интеллекта


    1. Основные направления в искусственном интеллекте


Искусственный интеллект (ИИ) – это раздел информатики, посвященный моделированию интеллектуальной деятельности человека, который в середине ХХ века оформился в самостоятельную науку. Термин «искусственный интеллект» (artificial intelligence) был предложен в 1956 году. ИИ охватывает обширную область исследований и разработок интеллектуальных систем, предназначенных для работы в трудно формализуемых областях деятельности человека. Для задач, решаемых методами ИИ, характерно наличие большого числа степеней свободы с числом вариантов поиска решений, приближающимся к бесконечности.

Основные направления развития ИИ:

  1. Разработка интеллектуальных информационных систем, основанных на знаниях. ИИС объединяют в себе возможности систем управления базами данных (СУБД), лежащих в основе информационных систем, и технологию ИИ, благодаря чему хранение в них информации сочетается с ее обработкой и подготовкой для использования при принятии решений. Разновидностями ИИС являются экспертные системы (ЭС), системы поддержки принятий решений (СППР) и экономические советующие системы (ЭСС).

  2. Нейросетевые и нейрокомпьютерные технологии.

Искусственные нейронные сети и нейрокомпьютеры в значительной мере заимствуют принципы работы головного мозга человека. Знания в них изначально не закладываются, а приобретаются в процессе обучения.

  1. Мультиагентные (многоагентные) системы.

Агент – это программная или программно-аппаратная сущность, способная действовать в интересах достижения целей, поставленных владельцем. Интеллектуальные агенты обладают свойствами автономности, социального поведения, реактивности, базовых знаний, убеждений и др. Многоагентные системы (МАС) состоят из множеств:

  • системных единиц, в котором выделяется подмножество активных единиц – агентов, манипулирующих подмножеством пассивных единиц – объектов;

  • задач (функций, ролей), которые поручаются агентам;

  • отношений между агентами;

  • организационных структур, формируемых агентами;

  • действий агентов.

Средой функционирования МАС является Интернет.

  1. Распознавание образов. К нему относят широкий круг проблем в области распознавания изображений, символов, текстов и звуков.

  2. Компьютерная лингвистика. В рамках данного направления решаются задачи машинного перевода и разработки естественно-языковых интерфейсов между человеком и компьютером на основе нейросетевых технологий.

  3. Игры и творчество. Традиционно ИИ включает интеллектуальные задачи, решаемые при игре в шахматы и шашки. В широком смысле под игрой понимается некоторая конфликтная ситуация, участники которой своими действиями не только достигают своих целей, но и влияют на достижение целей другими участниками игры (экономические, политические и военные конфликты).

  4. Эволюционное моделирование предполагает воспроизведение процесса естественной эволюции с помощью компьютерных программ, в частности, на основе генетических алгоритмов и методов группового учета аргументов.


1.2. Данные и знания
Данные – это информация, полученная в результате наблюдений или измерений отдельных свойств (атрибутов), характеризующих объекты, процессы и явления предметной области. При обработке на компьютере данные трансформируются, условно проходя следующие этапы:

  • данные как результат измерений и наблюдений;

  • данные на материальных носителях информации (таблицы, протоколы);

  • структуры данных в виде диаграмм, графиков, функций;

  • данные на языке описания (сетевые, иерархические, реляционные модели представления данных);

  • базы данных (БД) на машинных носителях информации.

Знания – это связи и закономерности предметной области (принципы, модели, законы), полученные в результате практической деятельности и профессионального опыта, позволяющего специалистам ставить и решать задачи в данной области. При обработке на компьютере знания трансформируются аналогично данным:

  • знания в памяти человека как результат анализа опыта и мышления;

  • материальные носители знаний (литература, учебники, аналитические отчеты);

  • поле знаний – условное описание основных объектов предметной области, их атрибутов и закономерностей, связывающих их;

  • знания, описанные на языках представления знаний (формально-логические, продукционные, фреймовые модели, семантические сети);

  • база знаний (БЗ) на машинных носителях информации.

Существенными для понимания природы знаний являются способы определения понятий. Один из широко применяемых способов основан на идее интенсионала и экстенсионала. Интенсионал понятия – это определение его через соотнесение с понятием более высокого уровня абстракции с указанием специфических свойств. Экстенсионал – это определение понятия через перечисление его конкретных примеров. При этом интенсионалы формируют знания об объектах, а экстенсионалы объединяют данные. Вместе они формируют элементы поля знаний конкретной предметной области.


    1. Эволюция развития информационных систем


Принятие решений относительно действий или поведения в той или иной ситуации любых субъектов осуществляется на основе информационных процессов (ИП). ИП реализует отношения объекта и субъекта и представляет собой восприятие субъектом объективной реальности в виде данных, переработку этих данных в соответствии с целевой установкой и имеющимися знаниями о зависимостях фактов в информацию. На основе полученной информации происходят обновление знания субъекта, выработка решения по возможному изменению состояния объекта и целевой установки субъекта. Следовательно, ИП может быть рассмотрен в трех аспектах:

  • синтаксический аспект – предполагает отображение объективной реальности в некоторой среде или на определенном языке;

  • семантический аспект – определяет понимание и интерпретацию данных на основе знаний субъекта, которые отражают зависимости, закономерности взаимодействия объектов;

  • прагматический аспект – предусматривает оценку полезности полученного нового знания субъекта в соответствии с целевой установкой для принятия решения.

В широком смысле под информацией понимаются все три аспекта отражения ИП. Любая ИС обеспечивает ввод данных, хранение, обработку информации и вывод результатов.

Знание имеет двоякую природу: предметную (фактуальную) и проблемную (операционную). Предметное знание представляет известные сведения об объектах отражаемой реальности, они накапливаются в базе данных. Проблемное знание отражает зависимости и отношения между объектами, которые позволяют интерпретировать данные или извлекать из них информацию. Проблемные знания представляются либо в алгоритмической форме, либо в декларативной форме в виде БЗ. Часто предметные знания называют экстенсиональными (детализированными), а проблемные – интенсиональными (обобщенными).

ИП с помощью компьютерной информационной системы сводится к адекватному соединению предметных и проблемных знаний, что в различных ИС осуществляется по-разному. В системах, основанных на БД, происходит отделение предметных и проблемных знаний. Первые организуются в виде БД, вторые – в виде алгоритмов и соответствующих программ. В качестве посредника при этом выступает некоторая СУБД. Концепция независимости программ от данных позволяет повысить гибкость ИС по выполнению информационных запросов, но пользователь должен знать структуру БД и алгоритм решения задачи. Недостатками традиционных ИС является слабая адаптивность к изменениям в предметной области и невозможность решения плохо формализованных задач.

Эти недостатки устраняются в ИИС. При этом проблемные знания выделяются в БЗ, которая в декларативной форме хранит общие для различных задач единицы знаний. Управляющая структура приобретает характер универсального механизма решения задач (механизма вывода).

Следующим шагом в развитии ИИС является выделение в самостоятельную подсистему (репозитарий) метазнаний (знания о знаниях), которые описывают структуру предметных и проблемных знаний. Репозитарий отражает модель проблемной области в виде совокупности данных и правил. ИИС, обрабатывающие метазнания, получили название систем, основанных на моделях. В таких системах и программы, и структуры данных генерируются или компонуются из единиц знаний, описанных в репозитарии, каждый раз при изменении модели проблемной области [3].

Для ИИС, ориентированных на генерацию алгоритмов решения задач, характерны следующие признаки:

  • развитые коммуникативные способности;

  • умение решать сложные плохо формализуемые задачи;

  • способность к самообучению;

  • адаптивность.

Коммуникативные способности ИИС характеризуют способ взаимодействия конечного пользователя с системой, в частности, возможность формулирования произвольного запроса в диалоге с ИИС на языке, максимально приближенном к естественному. Сложные плохо формализованные задачи – это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний. Способность к самообучению – это возможность автоматического извлечения знаний для решения задач из накопленного опыта конкретных ситуаций. Адаптивность – способность к развитию системы в соответствии с объективными изменениями модели проблемной области.

Знания могут быть классифицированы по категориям [2]:

  • поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области;

  • глубинные – абстракции, аналогии, схемы, отображающие структуры и природу процессов, протекающих в предметной области. Эти знания объясняют явления и могут использоваться для прогнозирования поведения объектов.

Современные ЭС работают с поверхностными знаниями. Исторически первичными были процедурные знания, то есть знания, «растворенные» в алгоритмах. Эти знания управляют данными. Для их изменения необходимо переделать программу. С развитием ИИ приоритет данных постепенно изменялся и все большая их часть сосредоточивалась в структурах данных (таблицы, списки, графы), то есть увеличивалась роль декларативных знаний.
1.4. Основные разновидности ИИС и характеристики решаемых задач
ИИС предназначены для решения задач, требующих высочайшей квалификации исполнения. Характерной особенностью ИИС является наличие БЗ – совокупности знаний, записанной на магнитный носитель в форме, понятной эксперту и пользователю. Эксперт – высококвалифицированный специалист, готовый к передаче своей компетентности и опыта БЗ. Пользователь – специалист предметной области, для которого предназначена ИИС. Под предметной областью понимается множество объектов, значений их характеристик и связывающих их отношений. Проблемная область определяется характеристиками соответствующей предметной области и характеристиками типов решаемых в ней задач.

Потребность отражения человеческих знаний в памяти компьютера породила новое направление в информатике – инженерию знаний. Инженер по знаниям (когнитолог) – специалист, выступающий в роли буфера между экспертом и БЗ.

Основными разновидностями ИИС являются экспертные системы, системы поддержки принятия решений и экономические советующие системы.

ЭС применяются для решения неформализованных задач, которые обладают одной или несколькими из следующих характеристик [4,5]:

  • задачи не могут быть заданы полностью в числовой форме;




  • исходные данные и знания о предметной области обладают неоднозначностью, ошибочностью и противоречивостью;

  • цели не могут быть выражены в терминах точно определенной целевой функции;

  • алгоритмическое решение задач отсутствует;

  • алгоритмическое решение существует, но его нельзя использовать по причине большой размерности пространства решения и ограниченности ресурсов компьютера.

Для принятия решений в условиях определенности используются методы математического программирования. Однако в условиях неопределенности, неполноты и нечеткости знаний задача многократно усложняется. Для того чтобы СППР оставалась работоспособной в условиях изменяющегося окружения, необходима реализация механизмов ее самообучения. Основные требования, предъявляемые к СППР:

  • оказание квалифицированной поддержки процесса принятия решения на уровне консультанта;

  • обладание возможностями самообучения, то есть умение добавлять новые знания в БЗ, накапливать их и обрабатывать;

  • умение работать с неполной и нечеткой информацией;

  • поддержка многовариантных процессов принятия решений;

  • оценка последствий принимаемых решений.

ЭСС являются ИИС, ориентированными на решение широкого круга экономических задач, и могут быть разделены на два класса [6]:

    1. Системы, воспроизводящие осознанные мыслительные усилия человека (дедуктивные).

    2. Системы, воспроизводящие неосознанные (подсознательные) мыслительные действия человека (индуктивные).

К первому классу относятся:

      • расчетно-диагностические системы, в основе которых лежит ясное понимание целей принятия решений. Цель, трансформируемая в дерево целей, накладывается на дерево экономических показателей предприятия. В результате получается синтезированное дерево «цель – показатель», которое способно обеспечить расчет нужных для достижения целей ресурсов и резервов;

      • ЭС приближенных рассуждений. Создаются в том случае, если цель принятия решений сформулировать невозможно или нецелесообразно, однако ее можно заменить гипотезой. Для создания систем данного класса формулируются правила вывода типа «ЕСЛИ-ТО», которые синтезируются в дерево вывода. Результатом использования системы является оценка правдивости заданной пользователем гипотезы;



      • системы поддержки исполнения решений. Подразделяются на обучающие и рекомендательно-контролирующие системы.

Основная цель – предоставить управленческому персоналу недостающие знания, обучить конкретным действиям, необходимым для выполнения рекомендаций, предоставленных СППР, с последующим контролем исполнения.

Ко второму классу относятся:

  • системы нейросетевых вычислений. Осознанные знания являются лишь небольшой частью от общего объема знаний, которыми оперирует человек в повседневной жизни. Многие действия человек выполняет подсознательно или неосознанно. В данном случае классические модели бесполезны, так как предполагают наличие четко или нечетко сформулированных правил. Используемый для создания ЭСС нейросетевых вычислений эволюционный подход ориентирован на индуктивное обобщение и вывод. В основе построения систем индуктивного характера лежат нейросетевые технологии. Искусственная нейросеть предназначена главным образом для того, чтобы на основе анализа большого объема информации, отражающей частные случаи какого-либо явления, выявить общие закономерности, которые в свою очередь могут быть использованы для распознавания новых частных случаев. Нейросеть рассматривается в качестве «черного ящика», для которого известны лишь вход, выход и некоторые другие внешние параметры;

  • системы, ориентированные на естественно-языковые запросы. Исследования в этой области находятся на начальном этапе развития. Основная сложность заключается в предоставлении неосознанных (ассоциативных) знаний. БЗ представляется в форме семантической сети, то есть ориентированного графа, вершина которого соответствует понятиям, а дуги – отношениям между ними, отражающим осознанные (логические) знания.

Кроме этого, ЭСС содержит лингвистический процессор и базу ассоциаций. Лингвистический процессор предназначен для выявления с помощью лингвистических структур той БЗ, которая касается данного запроса. Выявленная часть семантической сети используется блоком обработки для последующей выдачи информации пользователю. Если в БЗ явно не присутствуют необходимые знания, то подключается база ассоциаций, которая пытается восполнить недостающую информацию. В ней подобно нейросетям активизируются те ассоциации, которые по специально рассчитанным коэффициентам наиболее близки к анализируемому запросу.


1.5. Классификация ИИС
ИИС можно классифицировать по разным основаниям, например, [1]:

- по областям применения (ИИС-менеджера, ИИС для анализа инвестиций, ИИС для налогообложения);

- степени интеграции с другими программными средствами, используемыми на предприятии (автономные, сопрягаемые интерфейсом, интегрированные);

- оперативности (статические, квазидинамические, реального времени);

- адаптивности (обучаемые, настраиваемые);

- используемой модели знаний (метод резолюций исчисления предикатов, фреймовые, продукционные, семантические сети, нейросетевые, нечеткие системы и выводы).

ИИС особенно эффективны в применении к слабоструктурированным задачам, в которых отсутствует строгая формализация и для решения которых применяются эвристические процедуры, позволяющие в большинстве случаев получить решение. По мере совершенствования принципов логического и правдоподобного вывода, применяемых в ИИС за счет использования нечеткой, модальной, временной логики, байесовских сетей вывода, ИИС начинают проникать в высокоинтеллектуальные области, связанные с разработкой стратегических решений по совершенствованию деятельности предприятий. Включение в состав ИИС классических экономико-математических моделей, методов линейного, квадратичного и динамического программирования позволяет сочетать анализ объекта на основе экономических показателей с учетом факторов и рисков политических и внеэкономических факторов, оценивать последствия полученных решений.

Классификация ИИС может быть выполнена на основании признаков, определенных в п. 1.1 [3]:

- по коммуникативным способностям (интеллектуальности интерфейса): интеллектуальные БЗ, естественно-языковой интерфейс, гипертекстовые системы, контекстные системы помощи, когнитивная графика;

- решению сложных задач: классифицирующие системы, доопределяющие системы, трансформирующие системы, многоагентные системы;

- способности к самообучению: индуктивные системы, нейронные сети, интеллектуальный анализ данных;

- адаптивности: CASE- технология, компонентная технология.
ЭС классифицируется [2]:

- по решаемой задаче: интерпретация данных, диагностика, проектирование, прогнозирование, планирование, обучение, мониторинг, управление;

- связи с реальным временем: статические, квазидинамические, динамические;

- типу ЭВМ: супер-ЭВМ, ЭВМ на символьных процессорах, на рабочих станциях, на персональных компьютерах;

- степени интеграции: автономные и гибридные.

Интерпретация данных является традиционной задачей для ЭС. Под интерпретацией понимается процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.

Под диагностикой понимается процесс соотнесения объекта с некоторым классом объектов или обнаружение неисправности в некоторой системе.

Проектирование состоит в подготовке спецификаций на создание объекта с заранее заданными свойствами. Прогнозирование позволяет предсказывать последствие некоторых событий или явлений на основании анализа имеющихся данных.

Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции.

Обучение предполагает использование компьютера для усвоения материала по некоторой дисциплине.

Основная задача мониторинга – непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы.

Под управлением понимается функция организованной системы, поддерживающая определенный режим деятельности.

Приведенные классификации ИИС не являются исчерпывающими и в процессе развития теории и практики построения систем могут модифицироваться и дополняться.

Глава 2. Модели представления знаний
Знания – это хорошо структурированные данные, а данные – информация, полученная в результате наблюдений или измерений, отдельных свойств (атрибутов), характеризующих объект, процессы и явления предметной области [2,8]. В настоящее время разработаны различные модели представления знаний, которые сводятся к классам:

  • продукционные модели;

  • формально-логические модели;

  • фреймовые модели;

  • семантические сети.

Продукционные и формально-логические модели относятся к классу модульных, т.е. оперируют отдельными элементами знаний (правилами, аксиомами предметной области). Фреймовые модели и семантические сети относятся к классу сетевых моделей, поскольку представляют возможность связывать фрагменты знаний через отношения.
2.1. Продукционная модель
Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде конструкций типа «Если (условие), то (действие)». Под условием (антецедентом) понимается некоторое предложение – образец, по которому осуществляется поиск в БЗ, а под действием (консеквентом) – действия, выполняемые при успешном исходе поиска. Они могут быть промежуточными, выступающими далее как условия, и терминальными (целевыми), завершающими работу системы.
Пример 2.1

Если «двигатель не заводится» и «стартер не работает», то «неполадки в системе электропитания стартера».

Антецедент и консеквент формируются из атрибутов (двигатель, стартер) и значений (не заводится, не работает).
Пример 2.2

Если «матрица значений регрессоров мультиколлинеарна» и «сокращение числа регрессоров невозможно», то необходимо «использование для построения линейной модели метода гребневой (ридж) регрессии» [9].

В данном случае атрибутами являются матрица значений регрессоров и число регрессоров, а значениями – мультиколлинеарность, и сокращение невозможно.
В рабочей памяти продукционной системы хранятся пары «атрибут – значение», истинность которых установлена в процессе решения конкретной задачи к некоторому текущему моменту времени. Содержание рабочей памяти изменяется в процессе решения задачи, что происходит по мере срабатывания правил. Правило срабатывает, если при сопоставлении фактов, содержащихся в рабочей памяти, с образцом правила имеет место совпадение. Для представления реальных знаний используются описания с помощью триплета «объект – атрибут – значение». С введением триплета правила из БЗ могут срабатывать более одного раза в процессе одного логического вывода, поскольку одно правило может применяться к различным объектам.

Существует два типа продукционных систем – с прямым и обратным выводом. Прямой логический вывод реализует стратегию от фактов к заключению или от данных к поиску цели. При обратном выводе выдвигаются гипотезы, которые могут быть подтвержены или опровергнуты на основании фактов, поступающих в рабочую память.

Продукционная модель представления знаний используется более чем в 80% ЭС [8], поскольку обладает наглядностью, высокой модульностью, легкостью внесения дополнений и изменений, простотой логического вывода. К недостаткам продукционных моделей следует отнести отличие от структуры знаний, свойственной человеку; неясность взаимных отношений правил; сложность оценки целостного образа знаний; низкую эффективность обработки знаний. В настоящее время имеется большое число программных средств (ПС), реализующих продукционный подход по построению БЗ, например языки высокого уровня CLIPS, OPSS, «пустые» ЭС EXSYS, Kappa, GURU, инструментальные системы KEE, ARTS, PIES.
2.2. Формально-логическая модель
Формализация знаний основана на системе исчисления предикатов первого порядка, которая в свою очередь основывается на исчислении высказываний. Высказыванием называется предложение, принимающее только два значения: истина или ложь. Например: «Иван студент». Из простых высказываний с помощью слов: и, или, не, если – то, могут формироваться более сложные высказывания.

Иван студент и Татьяна студентка;

Иван студент или Татьяна студентка.

Логика высказываний оперирует логическими связями между высказываниями, то есть решает вопросы типа:

Можно ли на основе высказывания А получить высказывание В?

Истинно ли высказывание В при истинности высказывания А?

Элементарные высказывания, т.е. те, которые нельзя разделить на частичные, могут рассматриваться как переменные логического типа, над которыми разрешены следующие логические операции: отрицание (┐); конъюнкция, или логическое умножение (۸); дизъюнкция, или логическое сложение (۷); импликация (→); эквивалентность (↔). Исчисление высказываний позволяет формализовать лишь малую часть множества рассуждений, поскольку этот аппарат не позволяет учитывать внутреннюю структуру высказывания, которая существует в естественных языках.
Пример 2.3. Пусть сформулированы следующие высказывания:

P: Все люди смертны;

Q: Сократ – человек;

R: Сократ – смертен.

Можно составить формулу

(P۸Q) → R.

Однако эта формула не является общезначимой, поскольку относится только к Сократу. Кроме того, высказывание R не выводится из P и Q, то есть при его отсутствии невозможно записать импликацию. Для достижения общезначимости Q необходимо разделить на две части: «Сократ» (субъект) и «человек» (свойство субъекта), что можно записать в виде некоторой функции:

человек (Сократ)

или в общем случае

человек (x)

Такая запись имеет внутреннюю структуру, т.к. значение высказывания является функцией его компонент, не является элементарным высказыванием и называется предикатом первого порядка.
Исчисление предикатов первого порядка – это формальный язык, используемый для представления отношений между объектами и для выявления новых отношений между объектами на основе существующих [7,10]. Алфавит языка исчисления предикатов первого порядка включает переменные, константы, предикаты, логические операции, функции, кванторы (). Конструкцией предложений в языке исчисления предикатов первого порядка управляют синтаксические правила.

Терм – это переменная, константа или результат применения функции к терму, например, a, x, f (x). Предложения языка исчисления предикатов первого порядка есть формулы, определенные следующим образом:

  1. Если P – n-арный предикат (предикат от n аргументов) и t1, t2, …, tn – термы, тогда P (t1, t2, …, tn) – атомическая формула (атом).

  2. Атом – это правильно построенная формула.

  3. Если F1 и F2 – атомы, то F1 ۸ F2, F1 ۷ F2, F1 → F2, ┐F1 – тоже атомы.

  4. Если F – формула и x – не связанная квантором переменная в F, тогда x (F) и x (F) – также атомы.

Чтобы избежать неоднозначности, необходимо определять формулы, в которых все переменные квантованы, т.е. связаны кванторами, например, x y ЛЮБИТ (x,y).

Такая формула называется замкнутой. Замкнутая формула имеет единственное истинное значение. Формула y ЛЮБИТ (x,y) является незамкнутой или открытой.

Для построения модели некоторой предметной области следует описать известные факты на языке логики предикатов и, используя ее результаты, построить систему, способную на основе имеющихся фактов строить некоторые новые предложения и отвечать на поставленные вопросы.
Пример 2.4. Пусть заданы предикаты:

E (x) – «x» въезжает в страну;

۷ (x) – «x» высокопоставленное лицо;

S (x,y) – «y» обыскивает «x»;

C (y) – «y» - таможенник;

P (x) – «x» способствует провозу наркотиков.

Тогда произвольные предложения на естественном языке могут быть записаны в виде:

  1. Таможенники обыскивают всех, кто въезжает в страну, кроме высокопоставленных лиц:

x (E (x) ۸ ┐ ۷ (x) → (y (S (x,y) ۸ C (y)))).

  1. Некоторые люди, въезжавшие в страну и способствовавшие провозу наркотиков, были обысканы исключительно людьми, способствовавшими провозу наркотиков:

x (E (x) ۸ P (x) ۸ (y (S (x,y) → P (y)))).

  1. Никто из высокопоставленных лиц не способствовал провозу наркотиков:

x (P (x) → ┐ ۷ (x)).

  1. Некоторые таможенники способствуют провозу наркотиков:

x (P (x) ۸ C (x)).

Задача состоит в том, чтобы, признав фактами предложения 1, 2, 3, доказать, что предложение 4 является истинным.
Для машинного решения вышеприведенной задачи используется методика автоматического формирования суждений, или метод дедукции. При этом последовательно реализуются процедуры: исключение знаков импликации; ограничение области действия знака отрицания; переименование переменных; вынесение кванторов в начало формулы; исключение кванторов и др. При автоматизации вывода доказательств методами исчисления предикатов требуется определить ряд процедур для выбора правил, позволяющих предотвратить «комбинаторный взрыв» и обеспечить проведение немонотонных рассуждений [11]. Решением стало создание декларативных (непроцедурных) языков программирования, в частности Пролога. Программирование на Прологе состоит из этапов:

  • объявление некоторых фактов об объектах и отношениях между ними;

  • определения некоторых правил об объектах и отношениях между ними;

  • формулировки вопросов об объектах и отношениях между ними.

Реально исчисление предикатов первого порядка в промышленных ЭС практически не используется. Формально-логическая модель представления знаний применима в основном в исследовательских системах, т.к. предъявляет очень высокие требования и ограничения к предметной области [8].
2.3. Фреймовая модель
Термин «фрейм» (англ. frame – каркас, рамка) был предложен Марвином Минским в 70-е годы XX века для обозначения структуры знаний при восприятии пространственных сцен. Фрейм – это абстрактный образ для представления стереотипа объекта, понятия или ситуации [8]. В психологии и философии известно понятие абстрактного образа. Например, произнесение слова «комната» порождает образ жилого помещения (стены, потолок, пол, дверь, окна). Из этого описания ничего нельзя убрать, но есть слоты – незаполненные значения некоторых атрибутов (количество окон, высота потолков, цвет стен). В теории фреймов такой образ называется фреймом комнаты [12].

Различают фреймы-образцы (прототипы), хранящиеся в БЗ и фреймы-экземпляры, которые создаются для отображения реальных фактических ситуаций на основе поступающих данных. Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний через фреймы-структуры (заем, залог), фреймы-роли (клиент, менеджер), фреймы-сценарии (банкротство, собрание акционеров), фреймы-ситуации (тревога, авария).

Структура фрейма представляется как список свойств:

(имя ФРЕЙМА:

(имя 1-го слота: значение 1-го слота),

(имя 2-го слота: значение 2-го слота),



(имя N-го слота: значение N-го слота)).

При описании предметной области для классов задач структурно-параметрической идентификации, прогнозирования временных рядов, распознавания образов используются классификационные фреймы (КФ) и фреймы-смысловые связки (ФСС) [9].

В нормальных формах Бэкуса – Науэра КФ определяется следующим образом:

<КФ>::=<идентификатор><имя фрейма>:=<список классификаций>

<список классификаций>::={[<поле>:]}<классификация>

<поле>::=<идентификатор>

<классификация>::={<вариант>}

<вариант>::=<идентификатор>{<условие><альтернатива>}|<иденти-фикатор> <альтернатива>

<альтернатива>::=<текст>{<указание>}

<указание>::=<ссылка на фрейм>|<описание фрейма>|<принуди-тельное разрешение фрейма>
Пример 2.5. Применительно к предметной области регрессионного анализа КФ имеет вид:

К0 <цель исследования>:=

V1 <регрессионный анализ данных>

К1 <этапы решения задачи>:=

V1 <предварительный анализ исходных данных>

V2 <структурно-параметрическая идентификация регрессионных моделей>

V3 <оценка качества регрессионных моделей>

К2 <предварительный анализ исходных данных>:=

V1 <анализ корректности исходных данных>

V2 <проверка условий применимости регрессионного анализа>

V3 <функциональное преобразование матрицы регрессоров>

К7 <оценка качества регрессионных моделей>:=

V1 <для К6 = 1 ۷ К6 = 4>

V2 <для мультипликативных моделей>

V3 <для нелинейных нереализуемых моделей>
ФСС определяется конструкцией

<ФСС>::=<идентификатор><входной аргумент> <глагол> <выходной аргумент>
Пример 2.6. Применительно к предметной области регрессионного анализа ФСС имеет вид [9]:

C0 <начало работы> требует

A <обеспечить ввод исходных данных>

B <назначить режим работы>

C1 <предварительный анализ исходных данных>

A <восстановление отсутствующих значений>

B <исключение аномальных значений отклика>

C <проверку значений отклика на нормальность распределения>

D <проверку значений отклика на статистическую независимость>

E <проверку матрицы регрессоров на мультиколлинеарность>

. . .

C3 <оценка качества регрессионных моделей> требует

A (если К7 = 1, то)
  1   2   3   4   5   6   7   8


написать администратору сайта