Главная страница

Работа 2. Интерфейс в широком смысле формально определенная логическая и физическая границы между взаимодействующими независимыми объектами.


Скачать 7.06 Mb.
НазваниеИнтерфейс в широком смысле формально определенная логическая и физическая границы между взаимодействующими независимыми объектами.
АнкорРабота 2
Дата01.03.2023
Размер7.06 Mb.
Формат файлаdocx
Имя файлаotchet.docx
ТипДокументы
#963203
страница58 из 75
1   ...   54   55   56   57   58   59   60   61   ...   75

Электролюминесцентные дисплеи (EL)


Электролюминесцентные (EL) дисплеи знакомы всем. Те, кто постарше, наверное, помнят настольные часы с зелеными или зелено-голубыми тусклыми цифрами, упрятанными где-то в глубине за мелкой сеткой электродов. С тех пор EL-дисплеи шагнули д алеко вперед. Кто-нибудь из автомобилистов, читающих эти строки, наверняка имеет в своей машине магнитолу с EL-дисплеем, музыкально озабоченные личности могут лицезреть EL-дисплеи в составе музыкальных центров и ресиверов с эквалайзерами. Наиболее широко EL‑дисплеи распространены в профессиональных областях — в медицине, в авиации и наземном транспорте, в промышленных контрольно-измерительных приборах, в аппаратуре военного назначения и даже, говорят, на космических станциях. Ибо сочетают в себе высокую надежность, устойчивость к ударам, вибрациям и большой температурный диапазон (–40…85 °C).

EL-ячейки устроены гораздо проще, чем жидкокристаллические или плазменные, и по структуре напоминают OLED-ячейку [И эти технологии в прессе часто путают], но имеют иные характеристики — в частности, для слоя люминофора [Так как люминофор по-английски phosphor, в нашей литературе его часто и называют «фосфором». Это даже хуже, чем «силиконовый чип» или «полиэстер» (polyester на русский переводится как «полиэфир»)], который здесь заменяет светодиодный слой, требуется высокая напряженность поля при достаточной яркости свечения (до 1,5·106 В/см), отчего на электроды приходится подавать переменное напряжение с амплитудой 200–300 вольт. Чтобы избежать пробоя тонкого активного слоя, оба электрода отделены от люминофора слоями изолятора. Люминофор — это некое химическое вещество (в частности, сульфид цинка), играющее роль генератора электронов, в которое включены атомы определенных металлов — марганца, теллура или меди, — поглощающие электроны и за счет этого излучающие свет. Для повышения контраста нижний изоляционный слой делается темным (хотя встречаются и прозрачные EL-дисплеи).

Многоцветные дисплеи в этой технологии получаются стандартным образом: люминофор испускает белый свет, а цвета формируются фильтрами, размещенными поверх излучающего слоя. Обычный EL-дисплей монохромный или воспроизводит пару-другую цветов, существуют также восьми­цветные EL-дисплеи или с шестнадцатью оттенками серого. Главный производитель подобных дисплеев в мире — компания Planar Systems, выпускающая их уже четверть века. В 2007 году она выкатила первый QVGA-дисплей (320х240) размером 12,4 см по диагонали, воспроизводящий шестнадцать цветов. Такие дисплеи вряд ли будут претендовать на роль «убийцы ЖК», но в своей области они отлично работают.

OELD и PHOLED


На стыке EL- и OLED-технологий находятся электролюминесцентные дисплеи на основе органических материалов (OELD). В начале тысячелетия ими активно занимались многие компании (в частности, Sanyo и TDK), но, судя по новостям, где-то около 2003 года энтузиазм пошел на убыль. К электролюминесцентным можно формально причислить и технологию PHOLED (Phosphorescent OLED) от компании Universal Display Corporation (поскольку фосфоресценция — это просто разновидность люминесценции, когда свечение несколько запаздывает по отношению к возбуждающему фактору [В быту фосфоресценцией ошибочно называют способность вещества светиться самостоятельно — хемилюминесценцию (игрушки в виде светящихся палочек), биолюминесценцию (светлячки или сырые гнилушки в лесу) или радиолюминесценцию радиоактивных веществ. И хотя явление получило название от элемента фосфора, чья «белая разновидность» светится за счет процессов хемилюминесценции («Собака Баскервилей», ага), ученые почему-то присвоили этому термину иное значение]), но все же из-за использования органического полупроводника ее следует рассматривать как разновидность OLED.

FED и SED — свет в конце туннеля? (NED)


Технология Field Emisson Display (FED) есть развитие идеи плоского кинескопа [Плоского не в смысле плоскоэкранного (это научились делать и без того), а в смысле тонкого, плоскопанельного, как плазма или ЖК], которой инженеры озаботились еще в 1980-е годы. Один из вариантов этой технологии от Candescent Technologies так и назывался — ThinCRT. Самым большим ее энтузиастом выступала Canon, которая занялась этим вопросом еще в 1986 году и даже дала своей версии специальное название: SED (Surface conduction Electron-emitter Display). В 2004-м Canon купила упомянутую Candescent Technologies и объединилась с Toshiba для организации производства, начать которое собирались в 2005 году. В начале 2007-го Canon выкупила у Toshiba долю в этом предприятии обратно и хотя продолжала всячески демонстрировать оптимизм (обещая, в частности, начать производство SED-дисплеев теперь уже в конце 2007-го), но на этом дело опять заглохло.

Суть технологии FED/SED очень проста и заключается в формулировке «каждому пикселу экрана по собственной электронной пушке». Конечно, подогревный катод (каковые используются в обычных кинескопах) столь микроскопических размеров не сделаешь, поэтому в основе всех разработок в этом направлении лежит идея использования автоэлектронной эмиссии. Это явление состоит в том, что пленка полупроводника под действием разности потенциалов может испускать электроны за счет туннельного эффекта. Чтобы туннельный эффект работал, нужны микроскопические зазоры (вернее сказать — «наноскопические»). Для этого в ячейках SED разработчики прорезали в пленке полупроводника сверхтонкие (несколько нанометров) щели. Образующиеся электроны ускоряются разностью потенциалов. В кинескопе это делается, как известно, за счет сверхвысокого (десятки киловольт) напряжения между анодом и электронной пушкой-катодом, а здесь, вследствие небольшого расстояния, достаточно лишь нескольких вольт. Ускоренные электроны попадают на люминофор и заставляют его светиться.

В FED-дисплее анод представляет собой алюминиевую пластину, покрытую люминофором, а прозрачный катод-эмиттер, излучающий электроны, находится на стеклянной пластине сверху. Одной из самых больших трудностей было обеспечение глубокого вакуума в ячейке — ведь стекло обычного кинескопа делают очень толстым, чтобы противостоять внешнему давлению.

Motorola разрабатывает иной вариант FED под названием NED, в котором излучателями электронов будут нанотрубки. А в конце ноября 2008 вдруг пришла новость из неожиданного источника — Sony. Оказывается, знаменитая корпорация совместно с компанией FE Technologies тихой сапой разрабатывала свой вариант FED-технологии и сейчас вынесла свое творение на публику.

В варианте FED от Sony эмиттеры электронов представляют собой конусы «наноскопических» размеров, на каждый субпиксел их приходится до 10 тысяч. Sony уверяет, что выход из строя 20% этих излучателей не влияет на качество картинки. Творение оказалось впечатляющим: 19-дюймовый дисплей с частотой обновления картинки 240 Гц, который на презентации обслуживали четыре (!) приставки PlayStation 3. Очевидцы говорят, что качество картинки ошеломляющее.
1   ...   54   55   56   57   58   59   60   61   ...   75


написать администратору сайта