Главная страница
Навигация по странице:

  • Схема функциональной целостности

  • Теория функционала плотности

  • Прикладные исследования

  • Параметрическое моделирование

  • Метод подвижных клеточных автоматов

  • Введение динамический модель математический

  • 1. Динамические модели: понятие, виды

  • Динамические модели. Источник Википедия Связанные понятия Модель


    Скачать 65.49 Kb.
    НазваниеИсточник Википедия Связанные понятия Модель
    Дата12.10.2021
    Размер65.49 Kb.
    Формат файлаdocx
    Имя файлаДинамические модели.docx
    ТипДокументы
    #246361
    страница2 из 4
    1   2   3   4

    Модель мозга — любая теоретическая система, которая стремится объяснить физиологические функции мозга с помощью известных законов физики и математики, а также известных фактов нейроанатомии и нейрофизиологии . Существуют по меньшей мере два основных положения, играющих фундаментальную роль в теории функционирования мозга, в отношении которых сходится мнение большинства современных теоретиков...

    Термостатика — одно из названий классической термодинамики, акцентирующее внимание на том, что эта научная дисциплина представляет собой феноменологическую теорию стационарных состояний и квазистатических процессов в сплошных средах, и в явном виде отражающее современное деление термодинамики на статическую и нестатическую части — равновесную термодинамику и неравновесную термодинамику.

    Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный...

    Схема функциональной целостности (СФЦ) — это логически универсальное графическое средство структурного представления исследуемых свойств системных объектов. Описание аппарата схем функциональной целостности было впервые опубликовано Можаевым А. С. в 1982 году. По построению аппарат СФЦ реализует все возможности алгебры логики в функциональном базисе «И», «ИЛИ» и «НЕ». СФЦ позволяют корректно представлять как все традиционные виды структурных схем (блок-схемы, деревья отказов, деревья событий, графы...

    Теория функционала плотности (англ. density functional theory, DFT) — метод расчёта электронной структуры систем многих частиц в квантовой физике и квантовой химии. В частности, применяется для расчёта электронной структуры молекул и конденсированного вещества. Является одним из наиболее широко используемых и универсальных методов в вычислительной физике и вычислительной химии. Твёрдое тело рассматривается как система, состоящая из большого числа одинаково взаимодействующих между собой электронов...

    Архитектура системы — принципиальная организация системы, воплощенная в её элементах, их взаимоотношениях друг с другом и со средой, а также принципы, направляющие её проектирование и эволюцию:3.

    Систе́ма (др.-греч. σύστημα «целое, составленное из частей; соединение») — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

    Прикладные исследования — научные исследования, направленные на практическое решение технических и социальных проблем.

    Ве́йвлет (англ. wavelet — небольшая волна, рябь), иногда, гораздо реже, вэйвлет — математическая функция, позволяющая анализировать различные частотные компоненты данных. График функции выглядит как волнообразные колебания с амплитудой, уменьшающейся до нуля вдали от начала координат. Однако это частное определение — в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб — время — уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием...

    Норма энергопотребления (промышленных предприятий) — это научно обоснованное количество энергоресурсов, необходимое и достаточное для обеспечения технологического процесса при заданных параметрах производства и окружающей среды.

    Параметрическое моделирование (параметризация) — моделирование (проектирование) с использованием параметров элементов модели и соотношений между этими параметрами. Параметризация позволяет за короткое время «проиграть» (с помощью изменения параметров или геометрических соотношений) различные конструктивные схемы и избежать принципиальных ошибок.

    Метод подвижных клеточных автоматов (MCA, от англ. movable cellular automata) — это метод вычислительной механики деформируемого твердого тела, основанный на дискретном подходе. Он объединяет преимущества метода классических клеточных автоматов и метода дискретных элементов. Важным преимуществом метода МСА является возможность моделирования разрушения материала, включая генерацию повреждений, распространение трещин, фрагментацию и перемешивание вещества. Моделирование именно этих процессов вызывает...

    Открытая система в статистической механике — механическая система, которая может обмениваться веществом и энергией с окружающей средой. Открытые системы взаимодействуют с внешней средой, причем полностью описать это взаимодействие и задать его некоторым гамильтонианом невозможно. Открытая система в равновесной статистической механике — это механическая система, число частиц в которой не остаётся постоянным.

    Секвенциальная логика — это логика памяти цифровых устройств. Название «секвенциальная» восходит к англ. sequential. Соответствующая логика может именоваться также как последовательностная, хотя последний термин по преимуществу употребляется в связи с логическими автоматами.

    Пространство состояний — в теории управления один из основных методов описания поведения динамической системы. Движение системы в пространстве состояний отражает изменение её состояний.

    Динамическая модель

    [править | править код]

    Материал из Википедии — свободной энциклопедии

    Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 сентября 2016; проверки требуют 4 правки.

    Перейти к навигацииПерейти к поиску

    Динамическая модель — теоретическая конструкция (модель), описывающая изменение состояний объекта. Динамическая модель может включать в себя описание этапов или фаз[1] или диаграмму состояний подсистем[2]. Часто имеет математическое выражение и используется главным образом в общественных науках (например, в социологии[3]), имеющих дело с динамическими системами, однако современная парадигма науки способствует тому, что данная модель также имеет широкое распространение во всех без исключения науках, в том числе в естественных[4] и технических[5]. Динамическая модель описывает систему с различными аккумуляторами энергии, представляемыми в форме математических операций суммирования, интегрирования и дифференцирования. Например, потенциальная и кинетическая энергия механического движения массивного объекта. Такие модели в теории автоматического управления строятся в виде передаточных функций.

    Математическая модель, в которой в той или иной форме раскрываются причинно-следственные связи, определяющие процесс перехода системы из одного состояния в другое, называется динамической моделью.[6]

    Примечания[править | править код]

      1. ↑ Вишневская А. В. Курс лекций «Конфликтология». Лекция 5. Динамическая модель конфликта (недоступная ссылка). Дата обращения 19 мая 2008. Архивировано 17 мая 2008 года.

      2. ↑ Динамическая модель системы или подсистемы

      3. ↑ Динамическая модель молодежной субкультуры (недоступная ссылка). Дата обращения 19 мая 2008. Архивировано 22 мая 2008 года.

      4. ↑ Динамическая модель кротовой норы и модель Мультивселенной

      5. ↑ Динамическая модель шариковинтовой пары

      6. ↑ Дмитриев А. К., Мальцев П. А. Основы теории построения и контроля сложных систем. — Производственное издание. — Ленинград Д-65, Марсово поле, 1.: Энергоатомиздат, 1988. — С. 67. — 192 с. — ISBN 5-283-04395-9.

    Ссылки[править | править код]

    • Dynamic model



    Это заготовка статьи по философии. Вы можете помочь проекту, дополнив её.

    Литература[править | править код]

    • Мельников В.Г. «Динамическая модель группы: теория и практика развития группы, организации». - Издательствово Кировская обл. тип. – 2001г. – 170с.

    Введение

    динамический модель математический

    Динамическая модель - теоретическая конструкция (модель), описывающая изменение (динамику) состояний объекта. Динамическая модель может включать в себя описание этапов или фаз или диаграмму состояний подсистем. Часто имеет математическое выражение и используется главным образом в общественных науках (например, в социологии), имеющих дело с динамическими системами, однако современная парадигма науки способствует тому, что данная модель также имеет широкое распространение во всех без исключения науках в т.ч. в естественных и технических.

    Экономико-математические модели описывают экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент). Существует два подхода к построению динамической модели:

    - оптимизационный (выбор оптимальной траектории экономического развития из множества возможных)

    - описательный, в центре которого понятие равновесной траектории (т. е. уравновешенного, сбалансированного роста).

    Динамические межотраслевые модели, экономико-математические модели плановых расчётов, позволяющие определять по годам перспективного периода объёмы производства продукции, капитальных вложений (а также ввода в действие основных фондов и производственных мощностей) по отраслям материального производства в их взаимной связи. В динамических межотраслевых моделях на каждый год планового периода задаются объёмы и структура "чистого" конечного продукта (личного и общественного потребления, накопления оборотных фондов и государственных резервов, экспортно-импортного сальдо, капитальных вложений, не связанных с увеличением производства в рассматриваемом периоде), а также объём и структура основных фондов на начало периода. В динамических межотраслевых моделях, помимо коэффициента прямых затрат, присущих статическим межотраслевым моделям, вводят специальные коэффициенты, характеризующие материально-вещественную структуру капитальных вложений.

    По типу используемого математического аппарата динамические межотраслевые модели делятся на балансовые и оптимальные. Балансовые динамические межотраслевые модели могут быть представлены как в форме системы линейных уравнений, так и в форме линейных дифференциальных или разностных уравнений. Балансовые динамические межотраслевые модели различают также по лагу (разрыв во времени между началом строительства и пуском в эксплуатацию построенного объекта). Для оптимальных динамических межотраслевых моделей характерны наличие определённого критерия оптимальности, замена системы линейных уравнений системой неравенств, введение специальных ограничений по трудовым и природным ресурсам.

    Динамические физические и виртуальные объекты существуют объективно. Это значит, что эти объекты функционируют в соответствии с некоторыми законами, независимо от того, знает ли и понимает ли их человек или нет. Например, для управления автомобилем вовсе не обязательно знать, как работает двигатель, что в нем происходит и почему это приводит к движению автомобиля, если нажимать на газ или поворачивать руль. Но если человек предполагает не управлять автомобилем, а сконструировать систему управления им, то знание и понимание процессов динамики уже совершенно необходимо.

    Динамические объекты и их линейные модели плотно исследовались и анализировались на протяжении более двух столетий многими учеными и инженерами. Результаты этих исследований и анализа и представляются ниже качественно в концентрированном виде, так, как это воспринимается автором. Прежде всего, это относится к линейным моделям динамических систем, их классификации, описанию их свойств и области состоятельности.

    Кроме того, далее обсуждаются и некоторые свойства нелинейных систем. Слова, термины "динамический", "динамичный" прочно и широко вошли в различные области знаний человека, используются и в быту, как эмоциональный эпитет энергичного движения в широком смысле этого слова, синоним быстрых изменений. В предлагаемой работе термин "динамический" будет использован в его узком и непосредственном значении, означающем "силовой", т.е. динамический объект - это объект, подверженный внешнему воздействию, приводящему к движению в широком смысле этого слова.

    1. Динамические модели: понятие, виды

    Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, значения физических величин в которых характеризуют состояние объекта. Объект способен реагировать на внешние воздействия изменением своего внутреннего состояния и выходных величин, характеризующих его состояние. Воздействие на объект, и его реакция в общем случае изменяются с течением времени, они наблюдаемы, т.е. могут быть измерены соответствующими приборами. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов.

    Если вчитаться и вдуматься в приведенное выше нестрогое определение, можно увидеть, что отдельно динамический объект в "чистом" виде, как вещь в себе, не существует: для описания объекта модель должна содержать еще и 4 источника воздействий (генераторы):

    - среду и механизм подачи на него этих воздействий

    - объект должен иметь протяженность в пространств

    - функционировать во времени

    - в модели должны быть измерительные устройства.

    Воздействием на объект может быть некоторая физическая величина: сила, температура, давление, электрическое напряжение и другие физические величины или совокупность нескольких величин, а реакцией, откликом объекта на воздействие, может быть движение в пространстве, например смещение или скорость, изменение температуры, силы тока и др.

    Для линейных моделей динамических объектов справедлив принцип суперпозиции (наложения), т.е. реакция на совокупность воздействий равна сумме реакций на каждое из них, а масштабному изменению воздействия соответствует пропорциональное изменение реакции на него. Одно воздействие может быть приложено к нескольким объектам или нескольким элементам объекта.

    Понятие динамический объект содержит и выражает причинно-следственную связь между воздействием на него и его реакцией. Например, между силой, приложенной к массивному телу, и его положением и движением, между электрическим напряжением, приложенным к элементу, и током, протекающим в нем.

    В общем случае динамические объекты являются нелинейными, в том числе они могут обладать и дискретностью, например, изменять быстро структуру при достижении воздействием некоторого уровня. Но обычно большую часть времени функционирования динамические объекты непрерывны во времени и при малых сигналах они линейны. Поэтому ниже основное внимание будет уделено именно линейным непрерывным динамическим объектам.

    Пример непрерывности: автомобиль, двигающийся по дороге - непрерывно функционирующий во времени объект, его положение зависит от времени непрерывно. Значительную часть времени автомобиль может рассматриваться как линейный объект, объект, функционирующий в линейном режиме. И только при авариях, столкновениях, когда, например, автомобиль разрушается, требуется описание его как нелинейного объекта.

    Линейность и непрерывность во времени выходной величины объекта просто удобный частный, но важный случай, позволяющий достаточно просто рассмотреть значительное число свойств динамического объекта.

    С другой стороны, если объект характеризуется процессами, протекающими в разных масштабах времени, то во многих случаях допустимо и полезно заменить наибыстрейшие процессы их дискретным во времени изменением.

    Настоящая работа посвящена, прежде всего, линейным моделям динамических объектов при детерминированных воздействиях. Гладкие детерминированные воздействия произвольного вида могут быть генерированы путем дискретного, сравнительно редкого аддитивного действия на младшие производные воздействия дозированными дельта - функциями. Такие модели состоятельны при сравнительно малых воздействиях для весьма широкого класса реальных объектов. Например, именно так формируются сигналы управления в компьютерных играх, имитирующих управление автомобилем или самолетом с клавиатуры. Случайные воздействия пока остаются за рамками рассмотрения.

    Состоятельность линейной модели динамического объекта определяется, в частности тем, что является ли его выходная величина достаточно гладкой, т.е. является ли она и несколько ее младших производных по времени непрерывными. Дело в том, что выходные величины реальных объектов изменяются достаточно плавно во времени. Например, самолет не может мгновенно переместиться из одной точки пространства в другую. Более того он, как и любое массивное тело, не может скачком изменить свою скорость, на это потребовалась бы бесконечная мощность. Но ускорение самолета или автомобиля может изменяться скачком.

    Понятие динамический объект вовсе не всесторонне определяет физический объект. Например, описание автомобиля как динамического объекта позволяет ответить на вопросы, как быстро он разгоняется и тормозит, как плавно двигается по неровной дороге и кочкам, какие воздействия будут испытывать водитель и пассажиры машины при движении по дороге, на какую гору он может подняться и т.п. Но в такой модели безразлично, какой цвет у автомобиля, не важна его цена и др., постольку, они не влияют на разгон автомобиля. Модель должна отражать главные с точки зрения некоторого критерия или совокупности критериев свойства моделируемого объекта и пренебрегать второстепенными его свойствами. Иначе она будет чрезмерно сложной, что затруднит анализ интересующих исследователя свойств.

    С дугой стороны, если исследователя интересует именно изменение во времени цвета автомобиля, вызываемое различными факторами, например солнечным светом или старением, то и для этого случая может быть составлено и решено соответствующее дифференциальное уравнение.

    Реальные объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействия от некоторого источника, но и сами воздействуют на этот источник, противодействуют ему. Выходная величина объекта управления во многих случаях является входной для другого, последующего динамического объекта, которая также, в свою очередь, может влиять на режим работы объекта. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

    Часто, при решении многих задач, рассматривается поведение динамического объекта только во времени, а его пространственные характеристики, в случаях, если они непосредственно не интересуют исследователя, не рассматриваются и не учитываются, за исключением упрощенного учета задержки сигнала, которая может быть обусловлена временем распространения воздействия в пространстве от источника к приемнику.

    Динамические объекты описываются дифференциальными уравнениями (системой дифференциальных уравнений). Во многих практически важных случаях это линейное, обыкновенное дифференциальное уравнение (ОДУ) или система ОДУ. Многообразие видов динамических объектов определяет высокую значимость дифференциальных уравнений как универсального математического аппарата их описания, позволяющего проводить теоретические исследования (анализ) этих объектов и на основе такого анализа конструировать модели и строить полезные для людей системы, приборы и устройства, объяснять устройство окружающего нас мира, по крайней мере, в масштабах макромира (не микро- и не мега-).

    Модель динамического объекта состоятельна, если она адекватна, соответствует реальному динамическому объекту. Это соответствие ограничивается некоторой пространственно-временной областью и диапазоном воздействий.

    Модель динамического объекта реализуема, если можно построить реальный объект, поведение которого под влиянием воздействий в некоторой пространственно-временной области и при некотором классе и диапазоне входных воздействий соответствует поведению модели.

    Широта классов, многообразие структур динамических объектов может вызвать предположение, что все они вместе обладают неисчислимым набором свойств. Однако попытка охватить и понять эти свойства, и принципы работы динамических объектов, во всем их многообразии вовсе не столь безнадежна.

    Дело в том, что если динамические объекты адекватно описываются дифференциальными уравнениями, а это именно так, то совокупность свойств, характеризующих динамический объект любого рода, определяется совокупностью свойств характеризующих его дифференциальное уравнение. Можно утверждать что, по крайней мере, для линейных объектов таких основных свойств существует довольно ограниченное и сравнительно небольшое число, а поэтому ограничен и набор основных свойств динамических объектов. Опираясь на эти свойства и комбинируя элементы, обладающие ими, можно построить динамические объекты с самыми разнообразными характеристиками.

    Итак, основные свойства динамических объектов выведены теоретически из их дифференциальных уравнений и соотнесены с поведением соответствующих реальных объектов.

    Динамический объект - это объект, воспринимающий изменяющиеся во времени внешние воздействия и реагирующий на них изменением выходной величины. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов. Иерархия объектов ограничена снизу простейшими моделями и опирается на их свойства.

    Воздействием на объект, как и его реакцией, являются физические, измеряемые величины, это может быть и совокупность физических величин, математически описываемая векторами.

    При описании динамических объектов с помощью дифференциальных уравнений неявно предполагается, что каждый элемент динамического объекта получает и расходует столько энергии (такую мощность), сколько ему требуется для нормальной работы в соответствии с его назначением по отклику на поступающие воздействия. Часть этой энергии объект может получать от входного воздействия и это описывается дифференциальным уравнением явно, другая часть может поступать от сторонних источников и в дифференциальном уравнении не фигурировать. Такой подход существенно упрощает анализ модели, не искажая свойств элементов и всего объекта. При необходимости процесс обмена энергией с внешней средой может быть подробно описан в явной форме и это будут также дифференциальные и алгебраические уравнения.

    В некоторых частных случаях источником всей энергии (мощности) для выходного сигнала объекта является входное воздействие: рычаг, разгон массивного тела силой, пассивная электрическая цепь и др.

    В общем случае воздействие может рассматриваться как управляющее потоками энергии для получения необходимой мощности выходного сигнала: усилитель синусоидального сигнала, просто идеальный усилитель и др.

    Динамические объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействие от его источника, но и сами воздействуют на этот источник: например в классической механике это выражается принципом, сформулированном в третьем законе Ньютона: действие равно противодействию, в электротехнике напряжение источника есть результат установления динамического равновесия между источником и нагрузкой. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

    По существу, все элементы динамического объекта являются двунаправленными, как и сам объект по отношению к внешним объектам. Это следует из обобщения третьего закона Ньютона, сформулированного им для механики: сила противодействия тела равна силе воздействия на него другим телом и направлена навстречу ей, а в химии также формулируется в виде принципа Ле Шателье. Обобщая можно сказать: воздействие одного динамического элемента на другой встречает противодействие некоторого вида. Например, электрическая нагрузка источника напряжения противодействует ему током, изменяя значение напряжения на выходе источника. В общем случае противодействие нагрузки влияет на режим работы источника, и их поведение определяется в результате, если это возможно, переходом в некоторое динамическое равновесие.

    Во многих случаях мощность источника воздействия значительно больше потребной входной мощности приемника, каковым является динамический объект. В этом случае динамический объект практически не влияет на режим работы источника (генератора) и связь может рассматриваться как однонаправленная от источника к объекту. Такая однонаправленная модель элемента, основывающаяся на рациональном физическом структурировании объекта, существенно упрощает описание и анализ системы. Собственно, многие технические объекты, хотя и далеко не все же, строятся как раз по такому принципу, в частности при проектировании систем для решения задач управления. В других случаях, например при решении задачи, когда требуется получение максимального кпд двигателя, противодействием пренебречь нельзя.

    Детализируя структуру динамического объекта можно придти к элементарным, условно не упрощаемым объектам. Такие объекты описываются простейшими алгебраическими и дифференциальными уравнениями. Фактически такие элементы в свою очередь могут иметь сложную структуру, однако удобнее при моделировании воспринимать их как единое целое, свойства которого определяются этими, сравнительно простыми уравнениями, связывающими реакцию с воздействием.
    1   2   3   4


    написать администратору сайта