Главная страница
Навигация по странице:

  • Множество рациональных чисел

  • Европы в 12 - 14 веках

  • Ф. Виета (1540-1603)

  • Канада

  • 703х240=168 720 3 746х2 007=7518 222

  • История чисел. История чисел и вычислений


    Скачать 138.5 Kb.
    НазваниеИстория чисел и вычислений
    АнкорИстория чисел
    Дата25.03.2022
    Размер138.5 Kb.
    Формат файлаdoc
    Имя файлаИстория чисел.doc
    ТипУрок
    #415246
    страница2 из 2
    1   2

    А ничего и не надо говорить. В современной математике равенство


    a (­–b) = –ab и (–a)(–b) = ab принимают без всяких доказательств.

    Однако в математике наряду с вопросом «почему?» встаёт вопрос «а зачем?». Зачем говорить: «Температура изменилась на –8°С», вместо того чтобы сказать: «Температура упала на 8° И впрямь, для обычной речи это не нужно. Но при составлении уравнений мы не всегда знаем, какой получится ответ — положительный или отрицательный. Например, в задаче спрашивается: «Через сколько лет отец будет вдвое старше сына?» Составив уравнение и решив его, оказывается, что корень равен ­­­­– 7. Значит 7 лет назад отец был вдвое старше сына. Вот поэтому математике и ввели отрицательные числа и с их помощью решают самые сложные уравнения.
    Множество рациональных чисел

    А что дальше? Как только людям понадобилось что – либо делить на части и что – то измерять, так оказалось, что натуральных чисел не хватает. Понадобилось новые числа — дробные. Множество дробных чисел (разумеется, и положительных, и отрицательных) вместе с целыми числами называется множеством рациональных чисел и обозначается буквой Q(от первой буквы французского слова quotient — отношение). Целые и дробные числа получили общее название - рациональные числа.
    Обыкновенные дроби

    Чтобы выяснить вопрос о происхождении дроби, надо остановиться не на счете, а на другом процессе, который возник со стародавних времен, - на измерении. Исторически дроби возникли в процессе измерения.

    В основе любого измерения всегда лежит какая-то величина (длина, объем, вес и т.д.). Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей.

    Так возникали первые конкретные дроби как определенные части каких-то определенных мер. Только гораздо позже названиями этих конкретных дробей начали обозначать такие же самые части других величин, а потом и абстрактные дроби.

    Дроби в Древнем Египте

    Первая дробь, с которой познакомились люди, была, наверное, половина. За ней последовали 1/4, 1/8 …, затем 1/3 , 1/6 и т.д., то есть самые простые дроби, доли целого, называемые единичными или основными дробями. У них числитель всегда единица. Некоторые народы древности и, в первую очередь, египтяне выражали любую дробь в виде суммы только основных дробей. Лишь значительно позже у греков, затем у индийцев и других народов стали входить в употребление и дроби общего вида, называемые обыкновенными, у которых числитель и знаменатель могут быть любыми натуральными числами.

    В Древнем Египте архитектура достигла высокого развития. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику.

    Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4 000 лет назад имели десятичную (но не позиционную) систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела.

    Вот как записывали египтяне свои дроби. Если, например, в результате измерения получалось дробное число 3/4 , то для египтян оно представлялось в виде суммы единичных дробей ½ + ¼ .

    Дроби в Древнем Риме

    Римляне пользовались, в основном, только конкретными дробями, которые заменяли абстрактные части подразделами используемых мер. Они остановили свое внимание на мере «асс», который у римлян служил основной единицей измерения массы, а также денежной единицей. Асс делился на двенадцать частей – унций. Из них складывали все дроби со знаменателем 12, то есть 1/12, 2/12, 3/12

    Так возникли римские двенадцатеричные дроби, то есть дроби, у которых знаменателем всегда было число 12. Вместо 1/12 римляне говорили «одна унция», 5/12 – «пять унций» и т.д. Три унции назывались четвертью, четыре унции – третью, шесть унций – половиной.

    Сейчас «асс» - аптекарский фунт.

    Вавилонские шестидесятеричные дроби

    Раскопками, проведенными в ХХ веке среди развалин древних городов южной части Двуречья, обнаружено большое количество клинописных математических табличек. Ученые, изучая их, установили, что за 2000 лет до н. э. у вавилонян математика достигла высокого уровня развития.

    Письменная шестидесятеричная нумерация вавилонян комбинировалась их двух значков: вертикального клина ▼, обозначавшего единицу, и условного знака ◄, обозначавшего десять. В вавилонских клинописных текстах впервые встречается позиционная система счисления. Вертикальный клин обозначал не только 1, но и 60, 602, 603 и т.д. Знака для нуля в позиционной шестидесятеричной системе у вавилонян вначале не было. Позже был введен знак , заменяющий современный ноль, для отделения разрядов между собой.

    Происхождение шестидесятеричной системы счисления у вавилонян связано, как полагают ученые, с тем, что вавилонская денежная и весовая единицы измерения подразделялись в силу исторических условий на 60 равных частей:

    • 1 талант = 60 мин;

    • 1 мина = 60 шекель.

    Шестидесятые доли были привычны в жизни вавилонян. Вот почему они пользовались шестидесятеричными дробями, имеющими знаменателем всегда число 60 или его степени: 602 = 3600, 603 = 216000 и т.д. В этом отношении шестидесятеричные дроби можно сравнить с нашими десятичными дробями.

    Вавилонская математика оказала влияние на греческую математику. Следы вавилонской шестидесятеричной системы счисления удержались в современной науке при измерении времени и углов. До наших дней сохранилось деление часа на 60 мин., минуты на 60 с, окружности на 360 градусов, градуса на 60 мин., минуты на 60с.

    Вавилоняне внесли ценный вклад в развитие астрономии. Шестидесятеричными дробями пользовались в астрономии ученые всех народов до XVII века, называя их астрономическими дробями. В отличие от них, дроби общего вида, которыми пользуемся мы, были названы обыкновенными.

    Нумерация и дроби в Древней Греции

    В Древней Греции арифметику – учение об общих свойствах чисел – отделяли от логистики – искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Здесь мы впервые встречаемся с общим понятием дроби вида m/n. Таким образом, можно считать, что впервые область натуральных чисел расширилась до области дополнительных рациональных чисел в Древней Греции не позднее V столетия до н. э. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали.

    В Древней Греции существовали две системы письменной нумерации: аттическая и ионийская или алфавитная. Они были так названы по древнегреческим областям - Аттика и Иония. В аттической системе, названной также геродиановой, большинство числовых знаков являются первыми буквами греческих соответствующих числительных, например, ГЕNTE (генте или центе) – пять, ΔЕКА (дека) – десять и т.д. Эту систему применяли в Аттике до I века н.э., но в других областях Древней Греции она была еще раньше заменена более удобной алфавитной нумерацией, быстро распространившейся по всей Греции.

    Греки употребляли наряду с единичными, «египетскими» дробями и общие обыкновенные дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним – числитель дроби. Например, 5/3 означало три пятых и т.д.
    Нумерация и дроби на Руси

    Как свидетельствуют старинные памятники русской истории, наши предки-славяне, находившиеся в культурном общении с Византией, пользовались десятичной алфавитной славянской нумерацией, сходной с ионийской. Над буквами-числами ставился особый знак, названный титло. Для обозначения тысячи применялся другой знак, который приставлялся слева от букв.

    В русских рукописных арифметиках XVII века дроби называли долями, позднее «ломаными числами». В старых руководствах находим следующие названия дробей на Руси:

    1/2 – половина, полтина

    1/3 – треть

    1/4 – четь

    1/6 – полтреть

    1/8 - полчеть

    1/12 –полполтреть

    1/16 - полполчеть

    1/24 –полполполтреть (малая треть)

    1/32 – полполполчеть (малая четь)

    1/5 – пятина

    1/7 - седьмина

    1/10 - десятина

    Славянская нумерация употреблялась в России до XVI века, затем в страну начала постепенно проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I.
    Дроби в других государствах древности

    В китайской «Математике в девяти разделах» уже имеют место сокращения дробей и все действия с дробями.

    У индийского математика Брахмагупты мы находим достаточно развитую систему дробей. У него встречаются разные дроби: и основные, и производные с любым числителем. Числитель и знаменатель записываются так же, как и у нас сейчас, но без горизонтальной черты, а просто размещаются один над другим.

    Арабы первыми начали отделять чертой числитель от знаменателя.

    Леонардо Пизанский уже записывает дроби, помещая в случае смешанного числа, целое число справа, но читает так, как принято у нас. Иордан Неморарий (XIII ст.) выполняет деление дробей с помощью деления числителя на числитель и знаменателя на знаменатель, уподобляя деление умножению. Для этого приходится члены первой дроби дополнять множителями:



    В XV – XVI столетиях учение о дробях приобретает уже знакомый нам теперь вид и оформляется приблизительно в те самые разделы, которые встречаются в наших учебниках.

    Следует отметить, что раздел арифметики о дробях долгое время был одним из наиболее трудных. Недаром у немцев сохранилась поговорка: «Попасть в дроби», что означало – зайти в безвыходное положение. Считалось, что тот, кто не знает дробей, не знает и арифметики.
    Десятичные дроби

    Со временем практика измерений и вычислений показала, что проще и удобнее пользоваться такими мерами, у которых отношение двух ближайших единиц длины было бы постоянным и равнялось бы именно десяти – основанию нумерации. Этим требованиям отвечает метрическая система мер.

    Однако следует отметить, что европейцы не первые, кто пришел к необходимости использовать десятичные дроби в математике.

    В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины ЧИ: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 3,275694 выглядела так: 3 чи, 2 цунь, 7 долей, 5 порядковых, 6 шерстинок, 9 тончайших, 4 паутинки.

    Десятичную дробь с помощью цифр и определенных знаков попытался записать арабский математик аль-Уклисиди в X веке в "Книге разделов об индийской арифметике". Некоторые элементы десятичной дроби встречаются в трудах многих ученых Европы в 12 - 14 веках.

    Полную теорию десятичных дробей дал узбекский ученый Джемшид Гиясэддин аль-Каши в книге " Ключ к арифметике", изданной в 1424 году, в которой он показал запись дроби в одну строку числами в десятичной системе и дал правила действия с ними. Ученый пользовался несколькими способами написания дроби: то он применял вертикальную черту: 3│275694, то чернила черного и красного цветов: 3275694. Но этот труд до европейских учёных своевременно не дошёл.

    Примерно в это же время математики Европы также пытались найти удобную запись десятичной дроби. В книге "Математический канон" французского математика Ф. Виета (1540-1603) десятичная дробь записана так: дробная часть подчеркивалась и записывалась выше строки целой части числа 3 275694 .

    Лишь в конце XVI  века Симон Стевин (1548-1620) независимо от аль-Каши, ввёл в Европе в употребление десятичные дроби, о чем написал в своей книге «Десятая». Эта работа (всего 7 страниц) содержала объяснение записи и правил действий с десятичными дробями. Он писал цифры дробного числа в одну строку с цифрами целого числа, при этом нумеруя их.

    1571 г. – Иоган Кеплер предложил современную запись десятичных дробей, т.е. отделение целой части от дробной запятой.

    1617 г. - шотландский математик Джон Непер предложил отделять десятичные знаки от целого числа либо запятой, либо точкой.

    1703 год - В России учение о десятичных дробях изложил Л. Ф. Магницкий, в учебнике «Арифметика - сиречь наука численная».

    В странах, где говорят по-английски (Англия, США, Канада и др.), и сейчас вместо запятой пишут точку, например: 2.3.

    Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять. Широкое применение десятичные дроби получили в XIX веке после введения тесно связанной с ними метрической системы мер и весов. Например, в нашей стране в сельском хозяйстве и промышленности десятичные дроби и их частный вид – проценты – применяются намного чаще, чем обыкновенные дроби.

    Взаимосвязь между этими тремя множествами с помощью кругов Эйлера выглядит так:


    Посмотрим на множество Zс той же точки зрения, что и на множество N. Есть и неограниченность, и упорядоченность, и замкнутость относительно сложения, вычитания и умножения. Замкнуто ли Zотносительно деления? Тоже, очевидно, нет — как во множестве N, так и во множестве Z деление выполняется далеко не всегда.
    Четыре действия арифметики.
    Сложение и вычитание.

    Числа были придуманы людьми, чтобы обозначать количество предметов: стрел в колчане, мешков зерна в амбаре, овец в стаде. Но эти величины непостоянны – количество предметов то увеличивалось, то уменьшалось, поэтому важно было складывать и вычитать.

    Когда числа были небольшими, это делалось просто: рисовали черточки на дереве, завязывали узелки на веревке. Пасет пастух стадо овец, на поясе у него веревка, а на веревке столько узелков, сколько овец в стаде. Родился ягнёнок – пастух завязал ещё один узелок. Утащили волки ещё двух овец - развязал два узелка. Вместо верёвки часто использовали живой «вычислительный прибор» - пальцы. Обычно так считают малыши. Большого труда стоит преподавателям отучить первоклассников от такого счёта и приучить к устному счёту в «уме». Однако наиболее стойкие продолжают считать на пальцах, держа руки в карманах, чтобы не видел учитель. А один первоклассник складывал числа, глядя на циферблат часов.

    С развитием цивилизации появились различные приёмы счёта. Они были необходимы и купцам, и ремесленникам, и тогдашним «банкирам» - ростовщикам. Однако искусством счёта владели не многие. Для расчётов привлекали специально обученных людей – счетчиков.

    Представьте, что вы оказались в Древнем Риме и вам следует сложить, например, числа CXXXIX и CCC XLIV. Что вы будете делать? Конечно, сначала перепишете их привычными для себя цифрами:139 и 344, а потом будете складывать так, как учили в школе.

    А как это сделал бы римский счётчик? Точно так же, хотя индийская позиционная система счисления пришла в Европу намного позже. Дело в том, что счётчик осуществит, не записывая числа, а с помощью своего счётного инструмента – абака. Абак – это доска с прорезанными в ней жёлобами. Чтобы сложить 139 и 344, счётчик сначала обозначает на абаке число 139. Для этого он укладывает на нижнем жёлобе 9 камешков, на следующем три камешка и один камешек кладёт в третий жёлоб, («камешек» по латыни calculus; отсюда и произошло название современного электронного счётчика – «калькулятор»). Если какого-то разряда в числе нет, то пустует и соответствующий желобок. Не правда ли, это полностью совпадает с современным принципом записи чисел?

    А дальше? Дальше счётчик кладёт в последний желобок к имеющимся там 9 камешкам еще 4, затем снимает оттуда 10 камешков, оставляя лишь 3, и 1 камешек кладёт во второй жёлоб. Потом добавляет ещё 3 камешка. Теперь камешки на доске показывают число 483(CDLXXXIII).

    Этот «вычислительный прибор» вам что-то напоминает? Ну, конечно же, добрые старые счёты. Только в счётах вместо камешков – деревянные шарики, нанизанные на проволоку. Русские счёты отличаются от западноевропейских тем, что на первых по десять шариков в ряду, а на вторых – по девять. Любопытно, что в Европе их и по сей день, называют «абак».
    Умножение.

    Умножение чисел сейчас изучают в первом классе школы. А вот в Средние века совсем немногие владели искусством умножения. Редкий аристократ мог похвастаться знанием таблицы умножения, даже если он окончил европейский университет.

    За тысячелетия развития математики было придумано множество способов умножения чисел. Итальянский математик Лука Пачоли в своём трактате «Сумма знаний по арифметике, отношениям и пропорциональности»(1494 г.) приводит восемь различных методов умножения. Один из них носит название «ревность», или «решётчатое умножение». Сначала рисуется прямоугольник, разделённый на квадраты, причём размеры сторон прямоугольника соответствуют числу десятичных знаков у множимого и множителя. Затем квадратные клетки, делятся по диагонали, и «…получается картинка, похожая на решётчатые ставни-жалюзи, - пишет Пачоли. – Такие ставни вешались на окна венецианских домов, мешая уличным прохожим видеть, сидящих у окон дам и монахинь».


    Умножение чисел 987 и 1998 методом «ревность».
    Перемножим этим способом числа 1998 и 987. Для этого запишем вверху таблицы число 987, а слева – 1998. Теперь в каждый квадратик впишем произведение цифр-сомножителей, расположенных в одной строке и в одном столбце с этим квадратиком. Десятки располагаются в нижнем треугольнике, а единицы – в верхнем. После того как все треугольники заполнены, цифры в них складываются вдоль каждой диагонали. Результаты записываются справа и снизу от таблицы – получается 1 972 026. Этот способ ничуть не хуже, чем общепринятый. Он даже проще, поскольку в клетки таблицы заносятся числа прямо из таблицы умножения без одновременного сложения, присутствующего в стандартном методе. Затем остаётся только произвести сложение.

    Другой способ называется «маленький замок». Сначала, как мы и привыкли, одно число записывается под другим, но затем цифры верхнего числа поочерёдно умножаются на нижнее число, причём начинают с цифры старшего разряда, и каждый раз добавляют нужное число нулей.

    Умножение чисел 1998 и 987 методом «маленький замок».
    На рисунке показано умножение чисел 1998 и 987 этим способом. Его преимущество в том, что уже с самого начала определяются цифры требуется быстро оценить величину. Остальные шесть приёмов, описанных Пачоли, также опираются на знание таблицы умножения.

    Однако в России среди крестьян некоторых губерний был распространён способ, который не требовал знания всей таблицы умножения. Он получил название «русский крестьянский способ умножения». Здесь необходимо было лишь умение умножать и делить числа на 2. Перемножим ещё раз числа 1998 и 987 этим способом. Напишем одно из чисел слева, а второе – справа на одной строчке. Левое число будем делить на 2, а правое – умножать на 2 и результаты записывать в столбик.

    Если при делении возникнет остаток (т. е. делимое окажется нечётным числом), то он отбрасывается. Умножение и деление на 2 продолжаем до тех пор, пока слева не останется 1. Затем вычеркнем те строчки столбиков, в которых слева стоят чётные числа. Теперь сложим оставшиеся числа в правом столбце – получим 1 972 026. Это и есть произведение перемножаемых чисел.
    Деление.
    Хотя умножение в старину и считалось нелёгким делом, однако деление было ещё сложнее. В Италии до сих пор сохранилась поговорка «Трудное дело деление». Так обычно говорят, когда оказываются перед почти неразрешимой проблемой.

    В Средние века людей, умевших производить деление, можно было пересчитать по пальцам. Их уважительно называли «магистрами деления». Они переезжали из города в город по приглашениям купцов, желавших привести в порядок свои счета.

    Методов деления придумано немало. Монах-математик Герберт, будущий Папа Римский Сильвестр II., привёл в своих сочинениях несколько способов деления на абаке. При этом он придерживался таких принципов: - как можно меньше применять таблицу умножения, в частности не использовать умножение в уме двузначных чисел на однозначные; - избегать вычитаний, заменяя их сложениями; - работа должна выполняться автоматически, без проверок, при которых тоже могут появиться ошибки. Такие строгие ограничения он ввёл, учитывая, сколь неграмотны были монахи, производившие таблицы умножения. Но в итоге, правила Герберта оказались настолько сложными, что не были понятны даже самым прилежным счётчикам-абацистам.

    Когда в Европе появился арабский способ деления, основанный на принятой сейчас позиционной десятиной системе счисления, он получил название «золотое деление». Им мы пользуемся и по сей день. А метод Герберта стали называть «железным делением».

    Кроме этих способов были и другие. Например, раскладывали делитель на множители, а затем последовательно делили делимое на эти числа. При этом для деления на однозначные числа существовал специальный метод.

    Долгое время в Европе конкурировали два способа деления: «золотое деление» и «галера». Прежде всего, напомним правила «золотого деления». Разделим 987 654 на 346

    Деление 987 654 на 346 методом «золотого деления»
    Сначала находим наибольшее целое число, которое, будучи, умноженным на 346, окажется меньше, чем 987. Такое число – 2, оно и будет первой цифрой частного. Затем в уме умножаем 346 на 2, результат записываем под первыми тремя цифрами делимого и производим вычитание. Потом к полученному числу приписываем следующую цифру делимого и продолжаем процесс, повторяя те же действия.

    Второй способ итальянцы называли «галера» из-за того, что после окончания вычислений цифры располагаются в виде фигуры., напоминающей это гребное судно. У англичан он известен как «метод зачёркиваний», поскольку здесь постоянно приходится зачёркивать цифры. Лука Пачоли считал этот способ самым быстрым. Может быть, кто-то из читателей решит пользоваться именно им. Метод «галера» отличается от «золотого деления» тем, что в нём нет умножения в уме многозначного числа на однозначные и вычитаниями полученного результатов по очереди. Этот метод зародился в Индии, оттуда он и проник в Европу. Правда, у индийцев в результате деления никаких корабликов не получалось. Ведь в то время они не пользовались для вычислений бумагой, а писали на дощечках, которые были покрыты пылью или песком. Вместо того чтобы зачёркивать цифры, они их просто стирали.

    В результате деления методом «галера» образуется фигура, напоминающая лодку, а чёрточки превращаются в вёсла.

    Я проверила, используя современные методы вычисления и вычислительную технику, правильно ли выполнено умножение многозначных чисел методом «ревность».
    703х240=168 720 3 746х2 007=7518 222

    Заключение


    Потребность в счете, измерениях, и желании проследить за изменением количественной характеристики, послужило толчком в зарождении математики и основными математическими действиями над числами. История показывает, как тяжел был путь выбора наиболее удобного варианта действий над числами. И не в последнюю очередь от этого зависит дальнейшее распространение и развитие математики как науки.
    .



    1   2


    написать администратору сайта