Главная страница
Навигация по странице:

  • 5.5 Сельскохозяйственные животные

  • 6 Радиационное воздействие на сообщества живых организмов

  • полный текст. История открытия радиоактивности Предмет и задачи радиоэкологии


    Скачать 11.76 Mb.
    НазваниеИстория открытия радиоактивности Предмет и задачи радиоэкологии
    Анкорполный текст.docx
    Дата27.05.2017
    Размер11.76 Mb.
    Формат файлаdocx
    Имя файлаполный текст.docx
    ТипДокументы
    #8107
    страница5 из 14
    1   2   3   4   5   6   7   8   9   ...   14
    5.4 Растения
    Известно, что в растениях может накапливаться, не повреждая их и не снижая урожайность, такое количество радионуклидов, при котором растениеводческая продукция становится непригодной для использования. Радионуклиды в растения могут поступать через вегетативные органы — аэральный путь поступления и через корневую систему — корневой путь поступления. Аэральное поступление наиболее значимое при радиоактивном загрязнении воздушной среды сразу после радиационного инцидента. При попадании радионуклидов в почву преобладает корневой путь поступления.
    При аэральном загрязнении на наземные органы растений оседают радиоактивные аэрозоли, оплавленные силикатные и карбонатные частицы грунта, частицы топлива, высокорадиоактивные “горячие” частицы, входящие в состав “сухого” и “мокрого” выпадения. Степень удержания радиоактивных выпадений растительностью оценивается по величине первичного удержания, которое выражается отношением количества радиоактивных частиц, осевших на растения, к общему количеству радиоактивных частиц, выпавших на данную площадь.

    Первичное удержание и последующие процессы потерь радиоактивности зависят от многих факторов, в том числе от размера частиц и вида выпадений, площади удерживающей поверхности и плотности растительного покрова, морфологии растений и типа травостоя, урожайности наземной массы, метеоусловий во время и после выпадения радиоактивных осадков и др. Мелкие частицы и водорастворимые формы закрепляются в 4-7 раз прочнее, чем крупные и твердые нерастворимые частицы. Наиболее эффективно растения задерживают частицы с диаметром менее 45—50 мкм.

    Потери радиоактивности растениями, обусловленные всеми факторами, кроме радиоактивного распада, называются полевыми потерями радиоактивности. Скорость удаления радиоактивных веществ с растительного покрова характеризует период полупотерь, т.е. время, за которое смывается дождем и сдувается ветром 50% активности. Максимальные потери радиоактивности происходят в первые 2-3 суток, а всего за 7 суток она снижается на 70-90%. Потери фиксированных радионуклидов мало зависят от погодных условий и определяются свойствами радионуклидов и биологическими особенностями растений. Период полупотерь для слабозакрепленной фракции йода-131 составляет 14 суток, цезия-137 – 14 суток, для стронция-90 – 5 сут., а для прочнозакрепленной фракции этих радионуклидов – соответственно 27, 90 и 70 суток.

    Основными механизмами аэрального поступления радионуклидов являются ионно-обменные реакции и диффузия. Водорастворимые формы поступают с водой через цитоплазму в клетки основной ткани, через стенки клеток и межклеточники, через клетки, расположенные над поверхностью жилок, через устьица. Чем толще кутикула, тем слабее происходит диффузия и ионнообменные реакции. Поступление через устьица усиливается на свету, когда они открываются при дыхании. На растительности естественных луговых ценозов радионуклиды задерживаются в нижней части растений и в верхнем слое дернины. Здесь происходит дополнительное поступление радионуклидов через основание стебля и через поверхностные корни, поэтому растительность естественных лугов загрязняется радионуклидами сильнее, чем растительность окультуренных кормовых угодий. Наиболее активными участками поглощения радиоактивных, веществ при внекорневом загрязнении растений радионуклидами являются листья (листовое поглощение), соцветия (флоральное поглощение) и базальная часть растений, или поверхностные корни (поглощение из дернины в базальные части стебля).

    После проникновения в листья часть радионуклидов остается в листьях, а часть разносится по растению и концентрируется в других органах. Продвижение радионуклидов по растению зависит от физико-химических свойств радионуклидов и в меньшей степени от биологических особенностей растений. Наиболее активно продвигается по растению цезий-137, являющийся аналогом калия, а стронций, рутений и церий концентрируются в листьях в небольших количествах. Переход этих радионуклидов из листьев в генеративные органы в десятки раз меньше, чем цезия.

    Радионуклиды, осевшие на почву в составе различных выпадений, могут подниматься ветром или дождем и оседать на растительность. Это явление называется вторичным радиоактивным загрязнением растений, интенсивность которого оценивается по величине коэффициента ветрового подъема. Его величина зависит, в основном, от свойств атмосферы (плотности, турбулентности, температуры, давления, влажности, скорости движения воздуха над поверхностью почвы), от свойств почвы (гранулометрического и минералогического состава, влажности, плотности, структуры), от хозяйственной деятельности человека (обработка почвы, выпас скота, автомобильное движение), а также от рельефа и вида растительности. Вторичное загрязнение растительности происходит при пыльных бурях, при горении торфяников, лесов и сжигании послеуборочных остатков.

    Кроме ветрового переноса, причиной вторичного загрязнения может быть забрызгивание грязью нижних частей растений во время выпадения сильных дождей. Максимальная высота подъема частиц от земли около 40 см, поэтому такое загрязнение наиболее значимо для низкорослых видов растений. Вклад вторичного загрязнения в общее загрязнение может составлять 30% и более. Значительное вторичное загрязнение товарной части овощных и листовых культур радионуклидами происходит в период образования и роста плодов и листьев, злаковых культур – в фазах колошения, цветения и молочной спелости. Практически не загрязняется зерно бобовых и крестоцветных культур, кукурузы, так как оно защищено створками бобов, стручков и листьями, а также клубни и корнеплоды, защищенные почвой.

    Механизм усвоения радионуклидов корнями растений подобен усвоению необходимых элементов питания. Основными механизмами усвоения радионуклидов являются ионно-обменные реакции и диффузия. Главное отличие состоит в том, что радионуклиды находятся в почве в предельно низких концентрациях, а элементы питания – в более высоких концентрациях. Основное количество радионуклидов извлекается корнями из почвенного раствора, а также из почвенно-поглощающего комплекса, с частицами которого тесно контактируют корневые волоски, или зона поглощения корня. Поглощение ионов корнями и продвижение их вверх по растению происходит в три стадии. В первой стадии происходит адсорбция ионов мембранами поглощающих клеток корней. Во второй стадии происходит проникновение ионов в проводящие ткани. В третьей стадии происходит восходящее движение ионов по сосудам в клетки и ткани наземных органов. Скорость продвижения радионуклидов по растению зависит от интенсивности транспирации. В жаркую и сухую погоду транспирация усиливается, поэтому может повышаться содержание радионуклидов в наземной части растений.

    Из корней цезий, как одновалентный элемент, выводится быстрее, чем стронций, который может связываться в корнях в трудноподвижные формы. Таким образом, радионуклиды распределяются в органах растений неравномерно. Основное количество радионуклидов концентрируется в корнях. Распределение в наземных органах растений также неравномерно. Например, в созревших растениях фасоли Sr-90 распределяется следующим образом: в листьях 53-68%, стеблях 15-28%, створках бобов 12-25% и зерне 7-14%.

    Для оценки поступления радионуклидов из почвы в растения используют различные показатели. Наиболее часто используются коэффициенты перехода (Кп), а также коэффициенты накопления или коэффициенты концентрации (Кн). Коэффициент перехода – это отношение содержания радионуклида в растительной массе к поверхностной активности почвы, коэффициент накопления – отношение содержания радионуклида в растительной массе к содержанию радионуклида в почве. Коэффициент накопления различными культурами Sr-90 изменяется от 0,02 до 12, Сs-137 — от 0,02 до 1,1.

    Величина накопления радионуклидов зависит от следующих основных показателей: 1) свойств радионуклидов и форм нахождения их в почве; 2) физико-химических параметров почвы; 3) биологических особенностей растений; 4) агротехники возделывания; 5) погодно-климатических условий.
    При поступлении из водного раствора коэффициент накопления Сs-137 значительно выше, чем Sr-90. При поступлении из почвенно-поглощающего комплекса коэффициент накопления цезия-137 намного меньше, чем стронция-90. Это связано с более прочной сорбцией цезия-137 минеральной частью почвенно-поглощающего комплекса.

    В наземную часть растений ионы низких валентностей переносятся активнее и в больших количествах, чем ионы высоких валентностей, которые до 90-99% концентрируются в корнях. Из поступивших в корни цезия-137 и стронция-90 в корнях остается 20-40%, а 60-80% переносится в наземные органы. Обнаружено сходство в поглощении и продвижении по растению цезия-137 и калия, стронция-90 и кальция. Трансурановые радионуклиды имеют очень низкие коэффициенты накопления, т.к. у них ограничено поступление в корни и перенос из них в вегетативные органы. Накопление снижается в ряду: нептуний > америций > кюрий > плутоний.

    Среди почвенных характеристик наибольшее влияние на накоплениеоказывают гранулометрический и минералогический состав, агрохимические показатели почвы и режим увлажнения почвы. В зависимости от типа почвы при одинаковой плотности загрязнения их Сs-137 и Sr-90 коэффициенты пропорциональности для этих радионуклидов могут различаться до 2-х и более раз. Коэффициенты накопления радионуклидов на разных типах почв при одинаковой плотности поверхностной загрязненности могут различаться в 10–20 раз, а иногда до 100 раз. Коэффициенты накопления цезия-137 и стронция-90 на черноземных почвах соответственно в 20 и 10 раз ниже, чем на дерново-подзолистых почвах. Это связано с тем, что у черноземов богатый почвенно-поглощающий комплекс, насыщенный глиной, илом, гумусом и обменными катионами, что обеспечивает высокую емкость поглощения этой почвы и, следовательно, меньшее поступление радионуклидов в растения. На более тяжелых почвах Sr-90 накапливается в растениях в 5–10 раз интенсивнее, чем Сs-137.

    Особенности накопления радионуклидов растениями на разных типах почвы следует учитывать при производстве сельскохозяйственной продукции.
    Доказано, что все агрохимические показатели почвы, способствующие повышению сорбции радионуклидов почвой, снижают их поступление в растения. Установлена отрицательная зависимость между коэффициентом перехода в растения Сs-137 и содержанием в почве обменного калия (К2О). т.е. чем больше обменного калия в почве, тем меньше поступление цезия-137. Установлена отрицательная зависимость между содержанием обменного кальция, уровнем кислотности почвенного раствора и поступлением в растения стронция-90. Чем больше в почве обменного кальция и чем меньше кислотность почвенного раствора, тем меньше коэффициенты перехода стронция-90 в растения. Установлено, что минимальный переход Cs-137 и Sr-90 в растения наблюдается на почвах с оптимальными параметрами их агрохимических характеристик (89).

    На накопление радионуклидов растениями оказывают влияние различные биологические особенности растений, среди которых выделяют эволюционное происхождение растений или филогенез. Растения, имеющие раннее происхождение, накапливают больше радионуклидов, чем растения, возникшие в поздние периоды. По накоплению радионуклидов отделы флоры располагаются в следующем убывающем порядке: лишайники > мхи > папоротники > голосеменные > покрытосеменные. Различия по накоплению радионуклидов выявлены в пределах классов, семейств и видов. Межвидовые различия могут достигать до 5–100 и более раз. По накоплению радионуклидов в товарной части культуры располагаются в следующем убывающем порядке: корнеплоды, бобовые, картофель, крупяные, зерновые и овощные культуры. По накоплению стронция-90 выделяют сильнонакапливающие культуры (бобовые), средненакапливающие культуры (крупяные) и слабонакапливающие культуры (зерновые). Бобовые культуры накапливают радионуклиды в 2-10 раз больше, чем зерновые.

    Высокие коэффициенты накопления радионуклидов у многолетних трав естественных фитоценозов, видовой состав которых зависит от типа и влажности почвы, при этом видовые различия в пределах одной экосистемы достигают 15-30 раз. Осоковые и осоко-злаковые ценозы, произрастающие на постоянно переувлажненных почвах, накапливают цезий-137 в 100 и более раз больше, чем злаковые ценозы. Высокие коэффициенты накопления характерны для разнотравья всех фитоценозов (132).

    Значительное влияние на накопление радионуклидов оказывает онтогенез или фаза развития растений. Максимальное накопление наблюдается в ранних фазах развития, когда происходит интенсивный рост, сопровождающийся активным всасыванием питательных веществ, радионуклидов и переносом их в наземные органы. Например, у зерновых культур максимальное накопление в наземной массе происходит в фазе кущения и в фазе выход в трубку. В фазах молочной и восковой спелости происходит отток питательных веществ и радионуклидов из листьев в зерно, где содержание цезия может возрастать до 4-х раз.
    В органах растений радионуклиды распределяются неравномерно. Концентрация цезия и стронция в корнях может составлять 20–40%, а 60–80% этих радионуклидов поступает в наземные органы, где они распределяются неравномерно. Около 80% радионуклидов оседает в листьях и стеблях. Наименьшая концентрация радионуклидов отмечается в генеративных органах, т.е. в семенах, при максимальном накоплении в оболочках, кроющих чешуях, створках бобов и стручков. В корнеплодах высокое накопление радионуклидов в головке, в кожице и в сердцевине. В клубнях картофеля максимальное накопление в кожуре. Следует отметить, что при одинаковой плотности загрязнения почвы в картофеле содержание цезия-137 и стронция-90 значительно ниже, чем в корнеплодах. Это связано с тем, что клубень – это видоизмененный побег, в который питательные вещества и радионуклиды поступают из наземных органов. Корнеплод – это видоизмененный корень, активно поглощающий и накапливающий радионуклиды (76).

    Накопление радионуклидов зависит от места расположения, типа и мощности корневой системы. Растения с мочковатой и корневищной корневой системой, расположенной в верхних слоях почвы, накапливают больше радионуклидов, чем растения со стержневой системой, которая проникает в более глубокие и «чистые» почвенные горизонты.

    Из климатических условий наибольшее влияние на поступление радионуклидов оказывают годовое количество осадков, их распределение по месяцам и сумма положительных температур. Максимальное поступление радионуклидов наблюдается при оптимальной температуре и оптимальной влажности, которые обеспечивают интенсивный рост и развитие растений.
    Кроме свойств радионуклидов, почвенных характеристик и биологических особенностей растений на накопление радионуклидов значительное влияние оказывает технология возделывания культур, т.е. система обработки почвы, внесение извести, минеральных и органических удобрений (132).

    При накоплении радионуклидов в сельскохозянственной продукции из почвы, важное значение имеют лишь относительно долгоживущие радионуклиды (с периодом полураспада от нескольких десятков суток и более). Радионуклиды с меньшим периодом полураспада успевают распасться за вегетативный период (92, 56,4).
    5.5 Сельскохозяйственные животные
    Основными источниками поступления радионуклидов в организм животных являются корм, вода, почва, радиоактивные частицы, аэрозоли.
    Радионуклиды поступают в организм животных через пищеварительный тракт с кормом и водой, через легкие с загрязненным воздухом, через поверхность кожи, через слизистые оболочки и раны. При радиационных инцидентах основное количество радионуклидов поступает через легкие, кожу и слизистые оболочки. Газообразные радионуклиды быстро всасываются с поверхности легких в кровь и разносятся по организму. Частицы размером 0,5-1 мкм задерживаются на 90% в легких, где всасываются в кровь. Часть частиц поглощается в легких макрофагами и надолго остается в легочной ткани. Более крупные частицы оседают в верхних дыхательных путях. Из легких быстро всасываются в кровь хорошо растворимые соединения щелочных и щелочно-земельных элементов. Поступления через кожу может составлять 0,13-2,1%, при этом максимальное поступление у щелочных элементов, инертных газов, галогенов, а также у водорастворимых и жирорастворимых соединений. Через слизистые оболочки раны поступает менее 1% радионуклидов.
    В настоящее время 95-98% радионуклидов поступает через желудочно-кишечный тракт с кормами и водой. Поступление зависит от характера кормопроизводства хозяйства (вид и набор кормов, содержание радионуклидов в кормах или суточная активность рациона, от продуктивности и окультуренности кормовых угодий, а также от способа содержания животных. При этом минимальное поступление при стойловом содержании животных с кормлением скошенным зеленым кормом окультуренных угодий (89).

    При выпасе скота одновременно с травой поступают радиоактивные частицы, почвенный грунт и отмершие части растений, содержащие радионуклиды. В организм крупного рогатого скота может поступать 300-600 г почвы. С водой поступление радионуклидов на несколько порядков ниже, чем с кормом.

    В желудочно-кишечный тракт с кормом и почвой радионуклиды поступают в различных формах: 1) ионы, входящие в состав травянистого корма; 2) аэрозоли, адсорбированные на поверхности растений; 3) структурные и химические соединения, входящие в состав кормов; 4) силикатные и карбонатные частицы различной растворимости и др. Радионуклиды, попавшие в организм с кормом, включаются в основные процессы обмена веществ, т.е. всасывание в кровь, транспорт с кровью по организму, поступление и накопление в органах и тканях организма и выведение из организма. Основное место всасывания радионуклидов — кишечник, отделы которого по интенсивности всасывания располагаются в убывающем порядке.

    На величину и скорость всасывания влияет концентрация радионуклидов в корме (прямая связь) и количество поступивших радионуклидов (чем больше видовой состав радионуклидов, тем меньше всасывается каждый отдельный радионуклид. 
    Из физиологических особенностей животных наибольшее влияние на всасывание оказывают:

    - строение пищеварительного тракта (у животных с однокамерным желудком всасывание выше, чем у животных с четырехкамерным желудком);

    - возраст животных (у молодых животных интенсивный обмен веществ и высокая проницаемость мембран клеток кишечника, поэтому всасывание радионуклидов в 2-10 раз выше, чем у старых животных);

    - масса животных (у мелких животных активный обмен веществ и активное всасывание радионуклидов с последующим распределением на меньшую массу);

    - режимы организма (подвижные, активные животные имеют большие коэффициенты всасывания, чем пассивные);

    - продолжительность контакта радионуклидов с клетками желудочно-кишечного тракта и скорость переваримости корма. Чем быстрее переваривается корм и чем меньше времени он находится в ЖКТ, тем меньше всасывание;

    - степень заполненности ЖКТ кормом до поступления радионуклидов (натощак всасывание в 2-5 раз выше).

    На всасывание радионуклидов влияет качество корма, особенно содержание в кормах клетчатки, которая хорошо поглощает радионуклиды, снижая их всасывание, а также содержание калия, кальция, микроэлементов, витаминов и веществ, связывающих радионуклиды в трудно доступные соединения. В звене клетки кишечника – кровь имеет место дискриминация стронция относительно кальция. При дефиците усвояемого кальция активно всасывается стронций. Всасывание стронция-90 в кишечнике уменьшается в 1,5–5 и более раз при введении в рацион трикальцийфосфата, а также кормового мела или доломитовой муки. Препараты на основе ферроцина содержат обменные катионы алюминия, которые вступают в ионно-обменные реакции с одновалентными ионами, особенно активно с ионами цезия. Благодаря этим реакциям цезий связывается в коллоидные соединения и значительно меньше всасывается. Цезий поглощается ферроцином в 1000 раз сильнее, чем натрий и в 100 раз сильнее, чем калий, поэтому введение ферроцина, с одной стороны, уменьшает всасывание цезия-137 и переход его в мясо в 2–5 раз, а в молоко – в 5-7 раз, а с другой стороны, – не уменьшает в организме содержание натрия и калия и не разрушает процессы обмена веществ в организме.

    Поступившие в кровь радионуклиды разносятся по организму, откладываются в органах и выводятся из организма.
    Поведение всосавшихся в кровь радионуклидов зависит от физико-химических свойств радионуклидов и их биологического значения для организма, возраста и физиологического состояния животных, кратности и длительности поступления радионуклидов в организм. Цезий-137 накапливается преимущественно в мышечной ткани и во внутренних органах (133).

    Установлено, что кальций и стронций связываются с альбуминами, иттрий и церий – с глобулинами крови. Естественные комплексообразователи организма – молочная, глутаминовая и лимонная кислоты – легко «отрывают» стронций от белка, образуя со стронцием комплексы. В тканях под действием ферментов комплексы разрушаются, при этом возникают свободные катионы стронция и фосфаты стронция, которые включаются в процессы формирования костной ткани. Максимальная концентрация стронция в губчатых и компактных костях, минимальная – в трубчатых, с разницей в 1,7-2,6 раз. Кальций может вытеснять стронций, что следует помнить при составлении рациона кормления животных. Накопление стронция-90 в мышечной ткани и внутренних органах в сотни раз ниже, чем в костной ткани. В отличие от стронция-90 и цезия-137 йод-131 относится к короткоживущим радионуклидам (Т1/2=8,06 сут). По прочности связи с белками организма йод-131 превосходит все радионуклиды. Более 70% поступившего йода-131 связывается с белками крови и с тиреоидными гормонами, причем в крови йод-131 связывается с эритроцитами. Плутоний и америций связываются с белками крови и органов и откладываются в скелете, печени, селезенке, семенниках и надпочечниках.

    Радионуклиды нейтронной активации (59Fe, 60Co, 65Zn) активно всасываются и накапливаются в паренхиматозных органах, тканях и скелете, при этом максимальное количество откладывается в печени.
    По типу распределения в организме радионуклиды разделяются на 4 основные группы:

    1-я группа – равномерный – элементы 1 группы периодической системы: водород, литий, натрий, калий, рубидий, цезий, рутений;

    2-я группа – скелетный (остеотропный) – щелочноземельные элементы: бериллий, кальций, стронций, барий, радий, цирконий, иттрий;

    3-я группа – печеночный: лантан, церий, плутоний, марганец, торий;

    4-я группа – почечный: висмут, сурьма, мышьяк, уран.

    В особую группу с тиреотропным типом распределения выделяют йод, астат, бром.

    При длительном (хроническом) поступлении радионуклидов в организм животных с кормом сначала происходит интенсивное накопление, а затем, по мере насыщения радионуклидами тканей, постепенно замедляется до наступления равновесия между поступающими в организм радионуклидами и радионуклидами, выводимыми из организма, при этом содержание радионуклидов стабилизируется. Равновесие может нарушаться при изменении содержания радионуклидов в корме.
    Например, увеличение содержания радионуклидов в корме приводит к возрастанию накопления радионуклидов до установления нового равновесия, но на более высоком уровне. Снижение содержания радионуклидов в корме способствует выведению их из организма и уменьшению накопления. Эти особенности учитываются при откорме животных в условиях радиоактивного загрязнения кормовых угодий.

    Время установления равновесия зависит от свойств радионуклида, интенсивности обмена веществ, вида, возраста и физиологического состояния животных. В мышечной ткани и внутренних органах равновесие для цезия-137 устанавливается у крупного рогатого скота в интервале времени между 60-ми и 150-ми сутками. Выявлено, что радионуклиды из организма стельных самок переходят через плаценту к развивающимуся эмбриону и плоду. Плацента свободно пропускает калий и цезий, при этом кальций проникает в 3-12 раз активнее, чем стронций. Распределение радионуклидов по организму плода в утробе самки подобно распределению по организму взрослого животного (89).

    Неотъемлемым процессом поведения радионуклидов в организме является процесс выведения через желудочно-кишечный тракт и почки с калом и мочой, а также в меньшем количестве через легкие и кожу. У стельных и лактирующих животных часть радионуклидов выводится с плодом и молоком.

    Время, в течение которого исходное количество радионуклида уменьшится в два раза, называется эффективным периодом полувыведения (Тэфф.). Уменьшение концентрации радионуклидов происходит за счет 2-х основных факторов – это радиоактивный распад и обмен веществ.
    Эффективный период полувыведения определяют по формуле:

    Т эфф=

    где Тфиз – физические процессы, обусловленные радиоактивным распадом, т.е. период полураспада радионуклида – время, за которое количество радионуклида за счет распада ядер уменьшится в два раза; Тбиол. – физиологические процессы, обусловленные обменом веществ, т.е. биологический период полувыведения – время, за которое выводится половина поступившего количества радионуклида.
    Эффективный период полувыведения короткоживущих радионуклидов определяется периодом полураспада, долгоживущих – биологическим периодом полувыведения.

    Радионуклиды быстро выводятся из тканей с высокой скоростью обмена веществ, т.е. из мышечной ткани. Водорастворимые и свободные радионуклиды, которые хорошо всасываются в кровь (натрий, цезий, калий, йод), выводятся через почки. Радионуклиды, которые плохо всасываются (кальций, стронций, барий, церий, кобальт), выводятся через желудочно-кишечный тракт. Эффективный период полувыведения цезия-137 из мышечной ткани КРС составляет 20-30 суток, причем 35% цезия-137 выводится через 3 суток. Остеотропные радионуклиды выводятся очень медленно. Для выведения радионуклидов используют различные методы, ускоряющие выведение из первичных мест поступления, а также методы, способствующие выведению радионуклидов из органов и тканей организма (133). 

    Важным объектом исследования при радиохимическом анализе на содержание цезия -137 является мясо разных животных. При исследовании трех видов мяса (говядины, баранины и свинины) наибольшая концентрация этого радионуклида установлена в баранине; в говядине в 2 раза меньше, а в свинине - в 3 раза, а вот в оленине в 10 раз выше, чем в мясе других животных. Высокое содержание его в оленине обусловлено тем, что олени в зимний период питаются мхами и лишайниками, в которых большая концентрация цезия-137.

    При нахождении кур-несушек на загрязненной местности радиоактивные вещества попадают в яйцо. Суммарное количество радиоактивных веществ, выводимых из организма кур с яйцами, невелико (сотые доли процента от поступившего количества радиоактив­ных веществ в организм).

    В яйце радиоактивные вещества распределяются неравномерно. Независимо от «возраста» радионуклидов, подавляющая доля радиоактивности сосредоточивается в скорлупе. При этом по мере отдаления срока яйцекладки после выпадения радиоактивных веществ их абсолютное содержание в яйцах убывает, но относительная радиоактивная загрязненность скорлупы (по отношению к общему количеству радиоактивных веществ в яйце) непрерывно нарастает, в то время как в белке и желтке отмечается уменьшение загрязненности. В скорлупе откладывается стронций, в белок наиболее интенсивно включается цезий-137, причем его концентрация в белке в 2-3 раза выше, чем в желтке. При длительном поступлении количество цезия-137 в яйцах быстро возрастает, равновесие наступает примерно через неделю, причем в белке быстрее, нежели в желтке. Концентрации цезия-137 в желтке и белке составляют соответственно 0,3-0,5 и 1,6-2,4%. В желтке накапливается йод-131, концентрация ко­торого в 20-50 раз больше, чем в белке и скорлупе (101).


    6 Радиационное воздействие на сообщества живых организмов
    Поступление радионуклидов во внешнюю среду неизбежно связано с дополнительным облучением живых организмов от искусственных источников ионизирующего излучения. Всесторонняя оценка последствий использования ядерной энергии предполагает детальное исследование влияния облучения на объекты окружающей среды—микроорганизмы, растения и животных и их сообщества с целью анализа радиационной безопасности применения ионизирующих излучений в экологической перспективе.

    При облучении природных экосистем реализация радиационного воздействия осуществляется одновременно на различных уровнях интеграции биологических процессов, начиная от молекулярного и клеточного и кончая популяционным и биогеоценотическим.

    Биогеоценотический уровень радиационных изменений в природе—это не просто суммирование радиационных эффектов отдельных организмов, их популяций, а специфически сложная система ответных реакций биогеоценоза, как целостного природного образования (4).

    Одним из факторов, определяющих особенности проявления
    радиационных эффектов в биогеоценозах, является режим облучения, который можно охарактеризовать мощностью поглощенной дозы, продолжительностью воздействия ионизирующих излучений (кумулятивной поглощенной дозой) и типом излучения.

    Если источником излучения служат мигрирующие в природных
    сообществах радионуклиды, то распределение поглощенных доз в биогеоценозе выглядит очень сложно. При этом суммарная доза облучения живых организмов складывается из дозы внешнего облучения (от излучателей, находящихся вне объекта облучения) и дозы от инкорпорированных излучателей (от радионуклидов, которые включены в ткани растений и животных вследствие биологического усвоения). К внешнему облучению надо также отнести воздействие первично сорбированных на поверхностях растений и животных радионуклидов (4).

    Если источником излучения являются оседающие из атмосферы радиоактивные вещества, то выпадающие радионуклиды представляют собой смеси радиоактивных продуктов деления различного возраста, а испускаемые ими излучения — смешанное βγ-излучение. В молодой смеси продуктов деления, возраст которой не превышает 10 суток, на каждый γ-квант приходится приблизительно 1 β-частица, а для более старых смесей это отношение в несколько раз ниже. Средние энергии β-частиц и γ-квантов для молодых смесей продуктов деления приблизительно одинаковы, а для выдержанных смесей общая энергия β -излучения в несколько раз выше (4).

    Значимость действия β - и γ -излучений при радиоактивных выпадениях с экологической точки зрения существенно различна. Дело в том, что β -излучение—слабопроникающее, поэтому после оседания радионуклидов на внешние покровы животных излучение, воздействует лишь на поверхностные слои тканей животных и существенной опасности не представляет. Вклад β -излучения в поглощенную дозу внутренних органов животных относительно невелик, так как размеры крупных животных значительно превышают длину пробега β-частиц. Кроме того, при малом отношении площади поверхности тела животных к их массе количество задержанных
    радионуклидов на животных при оседании радиоактивных аэрозолей невелико. Для мелких животных, размеры которых сравнимы с длиной пробега β-частиц, значение этого вида излучения в лучевых эффектах возрастает.

    Совершенно иную роль играет β -излучение в радиационном поражении растений. Растительный покров представляет в большинстве случаев хороший фильтр для оседающих из воздуха радиоактивных аэрозолей. У большинства растений отношение площади поверхности к массе значительно выше, чем у животных, поэтому относительная доля β-излучения, поглощенного в фитомассе, существенно выше доли γ-излучения. При воздушном выпадении смеси β-, γ -излучающих нуклидов основное значение в лучевом повреждении может иметь β-излучение, т.к. осевшие на открытые части растений β-излучатели производят облучение жизненно важных органов (4,49)

    Дозы облучения различных компонентов природных биогеоценозов в поле излучений, созданном мигрирующими радионуклидами, варьируют в широких пределах. Причем, мощности доз облучения разных ингредиентов сообществ также изменяются во времени вследствие разнях темпов накопления радионуклидов растениями и животными и их очищения. При разовом поступлении радиоактивных аэрозолей в биогеоценоз в первый период после выпадении наибольшие поглощенные дозы наблюдаются в надземных частях растений, а также у животных, обитающих в этой части биогеоценоза (например, у птиц в гнездах, листогрызущих насекомых и т. п.). В последующий период, по мере миграции радиоактивных веществ на поверхность почвы, максимальные поглощенные дозы приходятся на нижние части стеблей, верхние части корней, семена растений, находящиеся в поверхностном слое почвы. Особенно важное значение для популяций растений имеет повышенное облучение почек, расположенных в верхнем слое почвы, что может снизить потенцию вегетативного размножения растений. В это время сильному облучению подвергаются также животные, обитающие
    в лесной подстилке и в верхнем горизонте почвы.

    В разных типах лесных биогеоценозов (лиственных и хвойных) спустя одно и то же время после оседания радиоактивных аэрозолей для одной и той же точки расположения в надземной части растительного сообщества дозы облучения могут различаться в три раза.

    Экологические последствия, связанные с неравномерностью распределения поглощенных доз, обусловленных мигрирующими в биогеоценозах радионуклидами, весьма разнообразен. Например, задерживание радионуклидов кронами лесных биогеоценозов приводит к снижению облучения подроста, повышая его
    выживаемость и обеспечивая лесовозобновление при поражении древостоев. Нахождение животных в норах обусловливает уменьшение дозовых нагрузок на них вследствие экранирующего влияния почвы и т. п.

    При облучении биогеоценоза последствия воздействия ионизирующих излучений определяются, с одной стороны, непосредственным влиянием излучений на его отдельные компоненты (так называемые первичные радиационные эффекты), а с другой, они являются результатом вторичных процессов, начало которым кладут первичные радиационные изменения (эти радиационные эффекты принято считать вторичными) (4).

    Наиболее характерными сдвигами в облучаемых сообществах растении являются исключение из биогеоценозов наиболее радиочувствительных видов растений, возвращение биогеоценоза к более ранним этапам сукцессии, смена форм-доминантов в результате первичных и вторичных радиационных эффектов, обеднение видового разнообразия сообществ.
    1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта