Главная страница

Изложение теоретического материала иллюстрируется большим количеством примеров с подробными решениями


Скачать 1.34 Mb.
НазваниеИзложение теоретического материала иллюстрируется большим количеством примеров с подробными решениями
Дата03.05.2021
Размер1.34 Mb.
Формат файлаdocx
Имя файлаbestreferat-357222 (1).docx
ТипИзложение
#201118
страница3 из 6
1   2   3   4   5   6

2.3 Теорема о разрешимости сравнения



Рассмотрим сравнение:




(2.7)


где , , . Если и то сравнение не имеет решения.

Пусть теперь , тогда будем иметь:

Поэтому получим: . Так как по определению НОД число , то из последнего сравнения получим:

Таким образом, полагая в (1), что НОД , мы пришли к сравнению такого же вида, но с условием: . Исследуем этот случай.

Теорема 1. Пусть дано сравнение (2.7) и НОД . Тогда сравнение (2.7) имеет единственное решение.

Доказательство. Так как НОД , то класс вычетов по mod m принадлежит мультипликативной группе классов вычетов, взаимно простых с mod m. Поэтому (по свойству группы) уравнение имеет единственное решение , где класс вычетов по mod m, взаимно простых с m. Значит, для , но тогда , отсюда . Обозначим через класс вычетов no mod m, тогда получим, что для следовательно, , a верное сравнение, то есть класс является решением сравнения (2.7). Это решение единственно, так как существует единственный класс . Теорема 1 доказана.

Пример 1. НОД (5,9) = 1, следовательно, сравнение имеет одно решение. Найдем его способом «подбора», то есть перебирая все числа из полной системы вычетов по modm: {0, 1, 2, 3, 4, 5, б, 7, 8} (m = 9).

следовательно, удовлетворяет сравнению, поэтому решением будет класс вычетов по modm или, по-другому, .

А так как данное сравнение имеет 1 решение, то остальные числа : 5, 6, 7, 8 проверять уже не надо.

Ответ: .

Заметим, что для нахождения решения сравнения первой степени с одной переменной (если оно есть) существует несколько способов:

1) подбора;

2) преобразования коэффициентов;

3) Эйлера (с помощью функции Эйлера);

4) цепных дробей.

Если модуль m является простым числом, то есть , число не делится на , то сравнение имеет единственное решение. Следовательно, множество классов вычетов образует поле по отношению сложения и умножения классов вычетов. Его обозначают через

Пример 2. Вычислить остаток при делении на 15.

Решение. 1 способ. Сравнение для применения теоремы Эйлера сократим на 3 (очевидно, .

Так как , то по теореме Ферма показатель 99 можно уменьшить по модулю 4. Получаем, что из следует:

.

Умножаем на 3 обе части сравнения и модуль: , т.е.

.

Аналогично вычисляем . Отсюда почленным сложением сравнений найдем: . Затем, возводя в 100-ю степень обе части сравнения, получаем .

Ответ: 1.

2 способ. Сравнение рассмотрим отдельно по модулям 3 и 5 (делители 15). Так как и , то

,

.

Среди целых чисел от 0 до 14 (возможные остатки при делении на 15) только 1, 6, 11 сравнимы с 1 по модулю 5. А среди этих трех только 1 сравнима с 1 по модулю 3, т.е. . Тогда .

3 способ. Число не делится на 3 (первое слагаемое делится, а второе не делится) и не делится на 5. Так как 3 и 5 есть простые числа, то с ними взаимно просто и взаимно просто с 15. По теореме Эйлера

,

Ответ: 1.

Пример 3. Разложить в цепную дробь. Проверить разложение, свернув цепную дробь последовательным вычислением подходящих дробей.

Решение. Найдём элементы цепной дроби как частные в алгоритме Евклида:

Сделаем сокращённую запись:

Пусть обозначает элемент цепной дроби, ю подходящую дробь, подходящей дроби. Будем вычислять подходящие дроби по рекуррентной формуле

,
используя схему:







2

39

1

3



1

2

79

81

322



0

1

39

40

159


Как видно, последняя подходящая дробь совпадает с исходным числом.

Замечание. Непосредственное сворачивание конечной цепной дроби «снизу вверх» обычно громоздко:

Задачи для самостоятельного решения.

Задача 1. Сократите дробь , применяя алгоритм Евклида.

Задача 2. Сколько натуральных чисел взаимно просто с 520 и не превосходит это число? (решить с помощью функции Эйлера)

Задача 3. Решить сравнение

Задача 4. Найти все целочисленные решения уравнения

1   2   3   4   5   6


написать администратору сайта