Изменчивость организмов. Изменчивость организмов
Скачать 62.38 Kb.
|
Раздел 3. Мутационная изменчивость Разнообразные формы и проявления модификационной изменчивости не затрагивают генотипа организма. Наряду с модификациями существует другая форма изменчивости, меняющая генотип. Эту форму изменчивости называют генотипической илимутационной, а отдельные изменения — мутациями. Существование наследственных изменений было известно Дарвину. Вся его теория эволюции вытекает из учения о естественном отборе наследственных изменений. Наследственная изменчивость — необходимая предпосылка естественного и искусственного отбора. Однако во времена Дарвина еще отсутствовали опытные данные по наследственности и законы наследования не были известны. Это не давало возможности строго различать разные формы изменчивости в зависимости от наследования. Понятие мутаций было введено в науку голландским ботаником де Фризом. У растения ослинник (энотера) он наблюдал появление резких скачкообразных отклонений от типичной формы растения, причем эти отклонения оказались наследственными. Дальнейшие исследования на различных объектах — растениях, животных, микроорганизмах — показали, что явление наследственной (мутационной) изменчивости свойственно всем организмам. Мутации затрагивают разнообразные стороны строения и функции организма. Например, у дрозофилы известны мутационные изменения формы крыльев (вплоть до полного их исчезновения), окраски тела, развития щетинок на теле, формы глаз, их окраски (красные, желтые, белые, вишнёвого цвета и т. п.), а также многих физиологических признаков (продолжительность жизни, плодовитость, стойкость к разным повреждающим воздействиям и т. п.). Первоначальные представления де Фриза о том, что мутации всегда крупные наследственные изменения, дальнейшими исследованиями не подтвердились. Наряду с резкими отклонениями гораздо чаще встречаются небольшие мутации, лишь немногим отличающиеся от исходных форм. Тем не менее, указанный еще де Фризом признак мутаций — их скачкообразный характер и наследственность — остается в силе. Мутации совершаются в различных направлениях, и обычно они не являются приспособительными, полезными для организма изменениями. Существуют и такие наследственные изменения, которые в гомозиготном состоянии вызывают гибель (такие мутации называются летальными). Частота и причины мутаций Как часто происходят мутации? Каковы причины их возникновения? Прежде чем ответить на этот вопрос, нужно иметь в виду, что учет возникающих мутаций представляет очень большие трудности. Большинство мутаций рецессивны. Они возникают в генах, локализованных в хромосомах половых клеток. Гамета, несущая вновь возникшую рецессивную мутацию, при оплодотворении обычно соединяется с гаметой, которая такой же мутации не несет. Поэтому вновь возникшая рецессивная мутация фенотипически не проявится. Однако в последующих поколениях она будет размножаться вместе с несущей ее хромосомой, и распространяться среди особей данного вида. Лишь когда соединятся две гаметы, несущие одну и ту же рецессивную мутацию, она проявится фенотипически. Исследования показали, что в природных условиях мутация каждого отдельно взятого гена происходит очень редко. На первый взгляд может возникнуть представление, что такая малая изменчивость гена не может дать достаточного материала наследственной изменчивости для естественного отбора. На самом деле это не так. У организма имеется несколько тысяч генов, так что общее число мутаций оказывается значительным. Для той же дрозофилы, например, высчитано, что около 5% ее гамет несут какую-нибудь мутацию. Прямые исследования распространения мутаций в природных популяциях дрозофилы, проведенные в разных географических зонах, показали, что они «насыщены» разнообразными мутациями, большинство которых, однако, в силу рецессивности не проявляется видимо. Значительная стойкость гена имеет большое биологическое значение. Действительно, если бы гены легко и часто изменялись, то существование видов стало бы невозможным, ибо в каждом поколении организмы превращались бы внечто совершенно новое, не похожее на родителей. Относительная стойкость видов — важное условие приспособления организма к окружающей среде. Способность к мутированию — одно из основных свойств гена. Разумеется, каждая отдельная мутация вызывается какой-то причиной. Однако в большинстве случаев эти причины остаются нам неизвестными. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что различными внешними факторами удается резко повысить число возникающих мутаций. Особенно эффективно действующими факторами экспериментального получения мутаций оказываются такие, которые влияют на нуклеиновые кислоты. Это вполне понятно, так как материальной основой генов служит ДНК. Впервые в опыте резкое повышение числа возникающих наследственных изменений было получено действием лучей Рентгена. Под влиянием рентгенизации число получаемых мутаций удалось повысить в 150 раз и даже более. С тех пор экспериментальное получение мутаций было осуществлено на самых различных организмах — от бактерий и вирусов до млекопитающих и цветковых растений. Кроме лучей Рентгена и других форм ионизирующей радиации, мутации могут быть вызваны самыми различными химическими и физическими воздействиями: температурой, изменением газового режима, влажности и т. п. Любые изменения, затрагивающие процессы обмена веществ, оказывают свое влияние и на мутационный процесс. Результаты исследований по экспериментальному получению мутаций показали, что в основном дело сводится к увеличению их частоты. Экспериментально вызываемые наследственные уклонения совершаются в различных направлениях, так же как и естественный процесс мутационной изменчивости. Лишь в самое последнее время намечаются некоторые пути воздействия на направление мутаций. Эти новые возможности базируются на глубоком проникновении в механизм процесса синтеза нуклеиновых кислот. Экспериментальное получение мутаций имеет и большое практическое значение, так как резко повышает наследственную изменчивость, давая, таким образом, материал для отбора. Важная закономерность была установлена Н.И. Вавиловым. Она известна под именем закона гомологических рядов наследственной изменчивости. Сущность этого закона сводится к тому, что виды и роды, генетически близкие (т. е. связанные друг с другом единством происхождения), характеризуются сходными рядами наследственной изменчивости. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов. У животных мы также встречаемся с проявлением этой закономерности. Например, у грызунов существуют гомологические ряды по окраске шерсти. Раздел 4. Основные типы мутаций и их классификаций Мутации, помимо качественных свойств, характеризует и способ возникновения. Спонтанные (случайные) — мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внешних и внутренних факторов (биологические, химические, физические). Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. Проведенное в Дании исследование показали, что примерно одна из 24000 гамет несет в себе доминантную мутацию. Ученый Курт Браун предложил прямой метод оценки таких мутаций, а именно: число мутаций разделить на удвоенное количество обследованных индивидов. изменчивость генотип фенотип селекция Типы мутаций Генные (точковые) мутации Затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть (делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно — клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидных цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую (вместо глутамина — валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно-клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятная мутация генов происходит при спаривании тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др. Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена первого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, «Молчащая мутация»- изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокислотная последовательность белка не меняется. Геномные мутации Главная отличительная черта геномных мутаций связана с нарушением числа хромосом в кариотипе. Эти мутации так же подразделяются на два вида: полиплоидные анеуплоидные. Полиплоидные мутации ведут к изменению хромосом в кариотипе, которое кратно гаплоидному набору хромосом. Этот синдром впервые был лишь обнаружен в 60-ых годах. Вообще полиплодия характерна в основном для человека, а среди животных встречается крайне редко. При полиплоидии число хромосом в клетке насчитывается по 69 (триплодие), а иногда и по 92 (тетраплодие) хромосомы. Такое изменение ведет практически к 100% смерти зародыша. Триплодие имеет не только многочисленные пороки, но и приводит к потере жизнеспособности. Тетраплодие встречается еще реже, но так же зачастую приводит к летальному исходу. Анеуплоидные мутации приводят к изменению числа хромосом в кариотипе, некратные — гаплоидному набору. В результате такой мутации возникают особи с аномальным числом хромосом. Как и триплодия, анеуплодия часто приводит к смерти еще на ранних этапах развития зародыша. Причиной же таких последствий является утрата целой группы сцепления генов в кариотипе. В целом же, механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в организме связаны с присутствием генетически разнородных клеток. Такой процесс называется мозаицизм. Геномные мутации одни из самых страшных. Они ведут к таким заболеваниям, как синдром Дауна (трисомия, возникает с частотой 1 больной на 600 новорожденных), синдром Клайнфельтера и др. Хромосомные мутации Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрехромосмным относятся: Дубликация — один из участков хромосомы представлен более одного раза. Делеция — утрачивается внутренний участок хромосомы. Инверсия — повороты участка хромосомы на 180 градусов. Межхромосомные перестройки (их еще называют транслокации) делятся на: Реципрокные — обмен участками негомологичных хромосом. Нереципрокные — изменение положения участка хромосомы. Дицентрические — слияние фрагментов негомологичных хромосом. Центрические — слияние центромер негомологичных хромосом. Хромосомные мутации проявляются у 1% новорожденных. Однако интересно, исследования показали, что нестабильность соматических клеток здоровых доноров не исключение, а норма. В связи с этим была высказана гипотеза о том, что нестабильность соматических клеток следует рассматривать не только как патологическое состояние, но и как адаптивную реакцию организма на измененные условия внутренней среды. Хромосомные мутации могут обладать фенотипическими явлениями. Наиболее распространенный пример — синдром «Кошачьего крика» (плач ребенка напоминает мяуканье кошки). Обычно носители такой делеции погибают в младенчестве. Хромосомные мутации часто приводят к патологическим нарушениям в организме, но в то же время хромосомные перестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом, а у обезьяны — 24. Таким образом, различие составляет всего одна хромосома. Ученые предполагают, что в процессе эволюции произошла хотя бы одна перестройка. Подтверждением этого может служить и тот факт, что 17 хромосома человека отличается от такой же хромосомы шимпанзе лишь одной перецентрической инверсией. Такие рассуждения во многом подтверждают теорию Дарвина. Классификация мутаций Трудности определения понятий «мутация» лучше всего иллюстрирует классификация ее типов. Существует несколько принципов такой классификации: A. По характеру изменения генома: 1. Геномные мутации — изменение числа хромосом. Геномные мутации — это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией. Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии — кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не 2, как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия — следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ-мутагенов. Геномные мутации в животном и растительном мире многообразны, но у человека обнаружены только 3 типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия. При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречаются только моносомия-Х. 2. Хромосомные мутации, или хромосомные перестройки, — изменение структуры хромосом. Хромосомные мутации — это перестройки хромосом. Участки хромосом могут изменить свое положение, потеряться или удвоиться. Хромосомные мутации — это мутации, нарушающие существующие группы сцепления или приводящие к возникновению новых групп сцепления. Такое определение указывает на способ, которым эти мутации в первую очередь обнаруживаются. Согласно другому определению, хромосомные мутации — это мутации, обусловленные перестройками хромосом. Хромосомные перестройки бывают разных типов. Пожалуй, наиболее распространенная — рекомбинация, или кроссинговер, при котором происходит обмен гомологичными участками хромосом. Другие типы перестроек хромосом — это транслокации, инверсии, делеции и дупликации. Разнообразны варианты изменения морфологии хромосом. Различают следующие ХП: — Реципрокные транслокации — обмен участками хромосом. — Робертсоновские транслокации — слияние двух акроцентрических хромосом в одну двуплечую хромосому. — Парацентрическая инверсия — изменение порядка генов на обратный в пределах участка, не затрагивающего центромеру. — Перицентрическая инверсия — то же самое, но в пределах участка, включающего центромеру. — Инсерция — встройка дополнительного хромосомного материала в какой-либо участок хромосомы. — Делеция — потеря участка хромосомы ХП приводят к изменениям кариотипа(хромосомные дупликации) 3. Генные мутации — изменения генов. Генные, или точковые, мутации связаны с изменением состава или последовательности нуклеотидов в пределах участка ДНК — гена. Нуклеотид внутри гена может быть заменен на другой или потерян, может быть вставлен лишний нуклеотид и т.д. Генные мутации могут привести к тому, что мутантный ген либо перестанет работать и тогда не образуются соответствующие и-РНК и белок, либо синтезируется белок с измененными свойствами, что приводит к изменению фенотипических признаков особи. Вследствие генных мутаций образуются новые аллели, что имеет большое эволюционное значение. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. Если под действием мутации изменяется один нуклеотид, говорят о точковых мутациях. Точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Из-за вырожденности генетического кода могут быть три генетических последствия точковых мутаций: сохранение смысла кодона (синонимическая замена нуклеотида), изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация) или образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA. В соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов. Б. По проявлению в гетерозиготе: 1.Доминантные мутации. Доминантные мутации — мутации, проявляющиеся в гетерозиготном состоянии в поколении их возникновения и расщепляющиеся в следующих поколениях. 2.Рецессивные мутации. Рецессивные мутации — мутации, проявляющиеся, если мутантный ген окажется в гомозиготном состоянии. B. По уклонению от нормы или так называемого дикого типа: 1. Прямые мутации. Прямые (первичные) мутации — это мутации, вызывающие отклонение от дикого типа. Обратные мутации — это возвращение к дикому типу. 2. Реверсии. Иногда говорят об обратных мутациях, однако очевидно, что они представляют собой только часть реверсий, поскольку в действительности широко распространены так называемые супрессорные мутации. Мутацию, восстанавливающую исходную структуру гена, — обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Г. В зависимости от причин, вызывающих мутации: 1. Спонтанные, возникающие без видимой причины, т.е. без каких-либо индуцирующих воздействий со стороны экспериментатора. 2. Индуцированные мутации. Современная точка зрения на причины спонтанных мутаций сформировалась в 60-х годах благодаря выяснению механизмов воспроизведения, репарации и рекомбинации генов и открытию ферментных систем, ответственных за эти процессы. Возникла тенденция объяснять генные мутации как ошибки в работе ферментов матричного синтеза ДНК. Сейчас эта гипотеза общеприз-нана. Притягательность гипотезы заключается также в том, что она позволяет рассматривать и индуцированный мутационный процесс как результат вмешательства внешних факторов в нормальное воспроизведение носителей генетической информации, т. е. дает единое объяснение причин спонтанных и индуцированных мутаций. Большое влияние на развитие теории мутационного процесса оказало изучение его генетического контроля. Были открыты гены, мутации которых могут повышать или понижать частоту как спонтанных, так и индуцированных мутаций. Эти и другие факты, которые будут рассмотрены далее, — убедительные аргументы в пользу существования общих причин индуцированного и спонтанного мутационного процесса. Первое объяснение механизма мутационных изменений (генных мутаций и хромосомных аберраций) было предложено в 1935 г. Н. В. Тимофеевым-Ресовским, К. Циммером и М. Дельбрюком на основании анализа радиационного мутагенеза у высших организмов и прежде всего у дрозофилы. Мутация рассматривалась как результат мгновенной перестройки атомов в сложной молекуле гена. Причиной такой перестройки считалось непосредственное попадание в ген кванта или ионизирующей частицы (принцип попадания) или же случайные колебания атомов. Открытие в дальнейшем эффекта последействия ионизирующих излучений показало, что мутации возникают в результате процесса, длящегося во времени, а не непосредственно в момент прохождения кванта энергии или ионизирующей частицы через ген. Перспективы преодоления этих и других противоречий зарождающейся теории мутационного процесса были намечены в физиологической гипотезе мутационного процесса, высказанной и 1946 г. М. Е. Лобашевым. Сущность гипотезы М.Е. Лобашева заключалась в том, что«благодаря способности клетки репарировать полученные повреждения становление мутации должно осуществляться в процессе обратимости повреждения, т. е. в процессе восстановления (репарации)». Это означало, что появлению мутации должно предшествовать предмутационное состояние или потенциальное изменение, которое может быть устранено (тождественная репарация) либо реализуется в виде мутации (нетождественная репарация). Для доказательства существования таких предмутационных состояний М.Е. Лобашев, его ученики К.В. Ватти, М.М. Тихомирова и другие в опытах с дрозофилой, облученной рентгеновыми лучами, дополнительно воздействовали на нее высокой температурой, которая сама по себе мутаций практически не вызывала. Мухи, подвергнутые такому комбинированному воздействию, обнаруживали более высокую мутабильность, чем после воздействия только рентгеновыми лучами. Только эти четыре способа классификации изменений генетического материала носят достаточно строгий характер и имеют универсальное значение. Каждый из подходов в этих способах классификации отражает некоторую существенную сторону возникновения либо проявления мутаций у любых организмов: эукариот, прокариот и их вирусов. Существуют и более частные подходы к классификации мутаций: Д. По локализации в клетке: 1. Ядерные. Ядерные мутации — геномные, хромосомные, точечные. 2. Цитоплазматические. В этом случае обычно подразумевают мутации неядерных генов. Цитоплазмотические мутации — связанные с мутациями неядерных генов находящихся в митохондриальной ДНК и ДНК пластид — хлоропластов. Е. По отношениюк возможности наследования: 1. Генеративные, происходящие в половых клетках Если мутации возникают в половых клетках, их называют генеративными мутациями, а если в других клетках организма — соматическими мутациями. Соматические мутации могут передаваться потомству при вегетативном размножении. Генеративные мутации — унаследованные мутации, они возникают в половых клетках, но не влияют на признаки данного организма, а проявляются только в следующем поколении. 2. Соматические, происходящие в соматических клетках Соматические мутации — мутации в клетках тела. Если изменяются гены в соматических клетках, то мутации проявляются у данного организма и не передаются потомству при половом размножении. Однако при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих мутировавший ген, мутации могут передаваться потомству. Такие мутации называются соматическими. Наконец, очень часто мутации классифицируют по их фенотипическому проявлению, т.е. в зависимости от изменяющегося признака. Тогда рассматривают мутации летальные, морфологические, биохимические, поведенческие, устойчивости или чувствительности к повреждающим агентам и т. д. Возможно, это наиболее эклектичный способ классификации, но им довольно частопользуются в специальной литературе. В общем виде можно сказать, что мутации — это наследуемые изменения генетического материала. Об их появлении судят по изменениям признаков. В первую очередь это относится к генным мутациям. Хромосомные и геномные мутации выражаются также в изменении характера наследования признаков. |