Живая природа
Скачать 224.14 Kb.
|
Участки ДНК, покрытые гистоном, неспособны к транскрипции, а участки без гистоновых белков транскрибируются. Таким образом, белки участвуют в контроле над считываемыми генами. Гипотеза дифференциальной активности генов: « Предположение о том, что в разных генах дифференцированных клеток репрессированы (закрыты для считывания) разные участки ДНК и поэтому синтезируются разные виды м-РНК». 2. На уровне трансляции. На ранних стадиях эмбрионального развития весь белковый синтез обеспечивается матрицами, созданными в яйцеклетке до оплодотворения под управлением ее генома. Синтез и-РНК не происходит, меняется характер синтеза белка. У разных животных синтез включается по-разному. У амфибий синтез и-РНК после 10 деления, синтез т-РНК на стадии бластулы. У человека синтез и-РНК после 2го деления. Не все молекулы и-РНК, находящиеся в яйцеклетке одновременно используются для синтеза полипептидов, белков. Часть из них некоторое время молчит. Морфогенез – образование формы, принятие новой формы. Образование формы чаще всего происходит в результате дифференциального роста. В основе морфогенеза лежит организованное движение клеток и групп клеток. В результате перемещения клетки попадают в новую среду. Процесс происходит во времени и пространстве. Дифференцированные клетки не могут существовать самостоятельно, кооперируются с другими клетками, образуя ткани и органы. В образовании органов важно поведение клеток, которое зависит от клеточных мембран. Клеточная мембрана играет роль в осуществлении -клеточных контактов -адгезии -агрегации. Для формирования органа необходимо присутствие в определенном количестве всех клеток, обладающих общим органным свойством. Смешивали клетки глазных зачатков и хряща. Раковые клетки не способны к сегрегации и неотделимы от нормальных. Остальные клетки подвержены сегрегации 36. МЕЙОЗ (деления созревания, период созревания), этап в образовании половых клеток; состоит из двух последовательных делений исходной диплоидной клетки (содержат два набора хромосом – 2n) и формирования четырёх гаплоидных половых клеток, или гамет (содержат по одному набору хромосом – n). Уменьшение (редукция) числа хромосом (2nn) происходит за счёт того, что на два деления приходится лишь одно удвоение (репликация) хромосомного материала. При оплодотворении гаплоидные гаметы – яйцеклетка и сперматозоид – сливаются и диплоидное число хромосом, характерное для каждого вида, восстанавливается (n + n2n). В главных чертах мейоз протекает сходно у разных групп организмов и у особей женского и мужского пола. Два следующих друг за другом деления первичной половой клетки обозначаются как мейоз I и мейоз II. Подобно делению соматических клеток – митозу, и мейоз I, и мейоз II состоят из четырёх основных стадий – профазы, метафазы, анафазы и телофазы. Вступающая в мейоз клетка диплоидна, а каждая хромосома содержит удвоенное количество ДНК. В первом мейотическом делении особенно сложна и длительна профаза I (у человека она занимает 22,5 сут). На этой стадии гомологичные хромосомы соединяются (конъюгируют) в пары – биваленты. В каждой хромосоме бивалента различимы в микроскопе две продольные половины – хроматиды, т. е. бивалент представляет собой четвёрку (тетраду) хроматид. В профазе I происходит генетически значимое событие – обмен гомологичными (содержащими одни и те же гены) участками несестринских хроматид, или кроссинговер. В анафазе I биваленты разъединяются и гомологичные хромосомы расходятся к противоположным полюсам клетки, причем, в отличие от анафазы митоза, каждая хромосома сохраняет две хроматиды. В результате число хромосом уменьшилось вдвое, но удвоенным остаётся и количество ДНК, представленное двумя хроматидами. Важная особенность расхождения хромосом заключается в том, что любая, отцовская или материнская, хромосома из гомологичной пары может отойти к любому из полюсов независимо от того, как расходятся хромосомы других пар. Это означает, что число возможных сочетаний хромосом в дочерних клетках обычно очень велико: 2n, где n – число хромосомных пар (у человека – 223). Так происходит ещё одно перемешивание родительского генетического материала – рекомбинация хромосом. После мейоза I обычно сразу или после короткой интерфазы, во время которой удвоение хромосом не происходит, следует мейоз II. Это деление аналогично митозу с той разницей, что делятся гаплоидные клетки. В анафа-зе II сестринские хроматиды разделяются и, став хромосомами, расходятся к полюсам. Число хромосом и количество ДНК приходят в соответствие, и мейоз II завершается образованием четырёх гаплоидных гамет, каждая из которых несёт уникальный генетический материал. У самок, однако, лишь одна из четырёх гамет – яйцеклетка, способная к оплодотворению. Мейоз – один из ключевых биологических процессов. Его значение состоит в поддержании в поколениях постоянства хромосомных наборов (кариотипов), т. е. в обеспечении наследственности, и в создании новых сочетаний отцовских и материнских генов, т. е. в обеспечении генотипической изменчивости. 37. Онтогенез, или индивидуальное развитие организма, осуществляется на основе наследственной программы, получаемой через вступившие в оплодотворение половые клетки родителей. В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические, физиологические и биохимические свойства, иными словами — фенотип. Ведущая роль в формировании фенотипа принадлежит наследственной информации, заключенной в генотипе организма. При этом простые признаки развиваются как результат определенного типа взаимодействия соответствующих аллельных геноВ. Наряду с этим результат реализации наследственной программы, заключенной в генотипе особи, в значительной мере зависит от условий, в которых осуществляется этот процесс. Факторы внешней по отношению к генотипу среды могут способствовать или препятствовать фенотипическому проявлению генетической информации, усиливать или ослаблять степень такого проявления Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной программы, обозначают как среду 1-го порядка. Особенно большое влияние на функцию генотипа факторы этой среды оказывают в период активных формообразовательных процессов, прежде всего в эмбриогенезе. С другой стороны, выделяют понятие окружающей среды, или среды 2-го порядка, как совокупности внешних по отношению к организму факторов. Критические периоды: зигота, имплантация, роды. два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процессом имплантации зародыша, второй — с формированием плаценты. Имплантация приходится на первую фазу гаструляции, у человека — на конец 1-й —начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органгенеза. У человека П.Г. Светлов выделил 3 критических периода: 1) имплантация (6-7-е сутки после оплодотворения яйцеклетки); 2) плацентация (окончание 2-ой недели беременности); 3) перинатальный период (роды). Последний период отличается резким изменением в организме характера кровообращения, газообмена, питания, выделения и др. Неблагоприятные воздействия среды в течение критических периодов развития зародыша могут вызвать отклонения в развитии органа. Такие отклонения в развитии органа, приводящие к функциональным расстройствам, называются уродствами, или пороками развития. Факторы среды, вызывающие формирование уродств, или пороков развития, названы тератогенными. Близнецовый метод . метод позволяет оценить роль наследственности и среды в развитии признака. Близнецы бывают монозиготными и дизиготными. Монозиготные(из 1 оплодотворенной яйцеклетки) в рез-те ее разделения на 2е с образованием двух эмбрионов. Имеют одинаков генотипы, всегда одного пола, высокую степень сходства по многим признакам. различие признаков зависит только от факторов внеш среды. Дизиготные близнецы из или более овулировавших и оплодотворенных разными сперматозоидами яйцеклеток. Имеют разные генотипы,мб одного или разн пола. Характеризуются дискордантностью- несходством по многим признакам.благодаря одноврем рождению и воспитанию имеют общие средовые факторы. Различие признаков в осн-м связано с генотипом. Для доказательства роли наследственности сравнивают долю(%) конкордантных пар (одинаковых по конкретному признаку) среди моно- и дизиготных близнецов. 39. Сперматогенез В мужской половой системе сперматогенез происходит в половых железах (гонадах), представленных парным органом -яичками, выполняющими две важнейшие функции: - генеративную (образование мужских половых клеток); - эндокринную (синтез мужских половых гормонов). Эти функции взаимосвязаны, хотя и обеспечиваются различными структурными компонентами органа (рис. 2.4). Сперматогенез включает 4 периода: - размножения; - роста; - созревания; - формирования. Период размножения. Сперматогенные клетки представлены сперматогониями. Это мелкие округлые диплоидные клетки, располагающиеся на ба-зальной мембране семенных извитых канальцев. Различаются два типа сперматогоний: А и В. Тип А представлен светлыми и темными слегка уплощенными клетками со светлым ядром. Темные сперматогоний — неделящиеся, покоящиеся клетки, считаются стволовыми; светлые сперматогоний — клетки, делящиеся митозом. Одни из них поддерживают популяцию камбиальных клеток, другие — в ходе последовательных делений становятся сперматогониями типа В. Последние имеют грушевидную форму, большое округлое ядро и центрально расположенное ядрышко. Они превращаются в первичные сперматоциты (сперматоциты первого порядка). Период роста. Сперматоциты первого порядка значительно увеличиваются в объеме и становятся самыми крупными сперматогенными клетками, содержание ДНК в ядрах удваивается (2п4с). Они отделяются от базальной мембраны канальцев и смещаются по направлению к просвету канальца. Сперматоциты первого порядка сразу вступают в профазу первого деления мейоза, продолжительностью около 22 сут. Период созревания. У особей мужского пола первое редукционное деление мейоза заканчивается образованием двух сперматоцитов второго порядка, или вторичных сперматоцитов. Это клетки меньших размеров, чем первичные, которые располагаются ближе к просвету канальцев. Второе эквационное деление заканчивается появлением 4 гаплоидных клеток — сперматид. Период формирования (спермиогенез). В этом периоде происходит преобразование сперматид в зрелые половые клетки -- сперматозоиды (спермин) (рис. 2.5). В период формирования происходят лишь структурные изменения клеток, так как хромосомный набор их не меняется, оставаясь гаплоидным. Структурные изменения сперматид заключаются в: - уплотнении хроматина с изменением размеров и формы ядра; - образовании акросомы; - формировании жгутика; - образовании особых структур цитоскелета в виде 9 продольно лежащих сегментированных колонн вокруг центриолей, которые дистально связаны с 9 плотными волокнами, располагающимися по периферии пар микротрубочек аксонемы; - изменении формы и расположения митохондрий; - удалении избыточной цитоплазмы. Особенностью сперматогенеза является образование функционального синцития, объединяющего клоны сперматогенных клеток, включенных в этот процесс. Межклеточные связи сперматогенных клеток обеспечивают их синхронное развитие, перенос питательных веществ и межклеточный обмен продуктами экспрессии генов. Сперматогенез у человека длится 64-74 дня, начинаясь в период полового созревания и продолжаясь в течение всей жизни. После 50 лет его интенсивность значительно снижается. У человека ежедневно вырабатывается около 250 млн сперматозоидов. Сперматогенез нормально протекает при температуре на 3° С ниже температуры тела (температура в мошонке). Он угнетается при повышении температуры (ношении излишне теплой одежды), крипторхизме (неопущении яичка в мошонку) и давлении на него окружающих тканей в полости брюшины и паховом канале. Строение сперматозоида Сперматозоид (сперматозоон) состоит из 5 частей: головки, шейки, вставочной части, хвоста и концевой части аксонемы. Длина сперматозоида человека составляет 55—60 мкм. Головка может быть овальной, грушевидной и уплощенной формы, длиной около 5 мкм и шириной 3 мкм. Основной составной частью головки является ядро с плотным высоко конденсированным хроматином, среди которого иногда обнаруживаются мелкие вакуоли и каналы — дефекты процесса конденсации. Конденсация достигается благодаря замещению гистонов специатьными не-гистонными белками, в частности, содержащими аргинин. Уплотненный хроматин ядра сперматозоидов чрезвычайно устойчив к действию различных физических и химических факторов, в том числе и ДНК-азы. Он неактивен, так как в нем не происходит транскрипция РНК и репликация ДНК. К лишенной пор передней поверхности ядерной оболочки прилежит акросомальный пузырек, формирующийся из комплекса Гольджи, который в виде шапочки распластан на передней поверхности почти 1/3 ядра. Акросома содержит густой материал, состоящий из углеводов и различных литических ферментов, необходимых для оплодотворения яйцеклетки. Наружные и внутренние мембраны акросомы различаются составом ферментативных белков. Шейка сперматозоида находится между головкой и вставочной частью, в которой располагается ближняя центриоль, лежащая у нижнего полюса ядра, а также 9 сегментированных колонн, связанных с 9 волокнами толстыми вставками и нитями. На границе шейки и вставочной части располагается дистальная центриоль, имеющая форму кольца, охватывающего хвост. Вставка является частью сперматозоида между шейкой и дис-тальным кольцом. Она содержит осевое волокно, проходящее через всю аксонему. Осевое волокно состоит из характерно расположенных по периферии 9 дуплетов микротрубочек и одной центральной пары. Снаружи каждой периферической пары микротрубочек находится толстое волокно. Толстые волокна тянутся на всем протяжении аксонемы. Вначале их толщина составляет около 100 нм, но затем она становится постепенно тоньше. Между плазмолеммой и толстыми волокнами вставочного отдела спиралевидно располагаются митохондрии, связанные с толстыми волокнами и тесно прилегающие друг к другу. Аксонема (осевая нить), идущая от дистальной центриоли до концевой части сперматозоида, имеет длину около 45 мкм. На всем протяжении хвоста осевая нить и толстые волокна формируют волокнистое влагалище. Концевая часть хвоста длиной около 5 мкм содержит только окончания парных микротрубочек осевого волокна, окруженные клеточной оболочкой. Из аксонемы сперматозоида наряду с белками тубулинами, входящими в состав микротрубочек, и динеином, способным взаимодействовать с тубулинами при затрате АТФ, приводя к скольжению динеиновых ручек относительно микротрубочек и изгибанию всей системы, придающим сперматозоиду поступательное движение, выделено еще два сократительных белка: спер-миозин и флактин, которые имеют сходное строение с актином и миозином мышечной ткани. Благодаря им аксонема выполняет волнообразные движения. Энергия, необходимая для движения, получается от митохондрий вставочного отдела из фруктозы, использующейся в гликолитическом цикле. 40. Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й — 10-й день — новорожденные; 10-й день — 1 год — грудной возраст; 1—3 года — раннее детство; 4—7 лет — первое детство; 8—12 лет — второе детство; 13—16 лет — подростковый период; 17—21 год — юношеский возраст; 22—35 лет — первый зрелый возраст; 36—60 лет — второй зрелый возраст; 61—74 года— пожилой возраст; с 75 лет — старческий возраст, после 90 лет — долгожители. Завершается онтогенез естественной смертью. Роль эндокринных желез в регуляции жизнедеятельности организма в постнатальном периоде очень велика. Важен гормон соматропин, выделяемый гипофизом с момента рождения до подросткового периода. Гормон щитовидной железы — тироксин - играет очень большую роль на протяжении всего периода роста. С подросткового возраста рост контролируется стероидными гормонами надпочечников и гонад. Из факторов среды наибольшее значение имеют питание, время года, психологические воздействия 42. Строение яйцеклетки Самые крупные клетки человеческого организма. Диаметр их составляет от 130 до 160 мкм. Обычно шаровидной формы. Имеют цитоплазматический тип строения. Ядро яйцеклетки находится в центре, содержит 23 хромосомы, из них 22 аутосомы и 1 половая Х-хромосома. В цитоплазме умеренно развито большинство органелл, но отсутствует клеточный центр. Комплекс Гольджи распадается на кортикальные гранулы, образующие оболочку оплодотворения. Гранулы располагаются под оолеммой. Характерным для яйцеклетки является наличие в цитоплазме белково-липидных включений (желтка), который используется зародышем в качестве питательного вещества в начальном периоде эмбриогенеза. Классифицируются яйцеклетки по двум принципам: По количеству желтка в цитоплазме: - алецитальные (безжелтковые) – у лягушек и головастиков - олиголецитальные (маложелтковые) – у человека - полилецитальные – у птиц 2. По распределению желтка в цитоплазме: - изолецитальные – с равномерным распределением желточных гранул - телолецитальные – желточные гранулы скапливаются у одного их полюсов клетки - центролецитальные – желток занимает большую часть цитоплазмы. Яйцеклетка человека относится к олиголецитальным и изолецитальным. Покрыта тремя оболочками: 1) внутренняя – оолемма, 2) блестящая оболочка, в состав которой входят продукты жизнедеятельности яйцеклетки – гликозоаминогликаны, 3) лучистый венец – образован фолликулярными клетками. Овогенез Это процесс образования и развития женских половых клеток. Осуществляется в яичниках и подразделяется на три периода: Размножения Роста Созревания 1. Стадия размножения начинается в эмбриональном периоде и продолжается в течение первого года жизни. Размножение происходит за счёт митотического деления первичных половых клеток – овогоний. К рождению в яичниках девочки образуется около 2 млн. овогоний. 2. К концу первого года жизни девочки процесс размножения приостанавливается, большая часть образовавшихся клеток редуцируется, а меньшая вступает в фазу роста, превращаясь в овоциты 1 порядка. Дальнейший рост клеток невозможен из-за отсутствия женских половых гормонов у ребёнка. Этот первый блок роста снимается с наступлением полового созревания, когда клетки вступают в фазу большого роста. Овоцит быстро растет, окружающие фолликулярные клетки размножаются, синтезируют фолликулярную жидкость. Образуется пузырчатый фолликул. На 14 день менструального цикла фолликул разрывается, и происходит выход яйцеклетки в маточную трубу. Этот процесс называется овуляция. 3. Стадия созревания заключается в двух последовательных делениях. Первое деление созревания происходит во время овуляции и является редукционным. Клетка теряет половинный набор хромосом и становится гаплоидной. В результате образуется овоцит 2 порядка и редукционное тельце. Второе деление созревания происходит в дистальном отделе маточной трубы при оплодотворении. Образуется 1 зрелая яйцеклетка и три редукционных тельца. Отличия овогенеза от сперматогенеза: - отсутствие стадии формирования - овогенез начинается в период внутриутробного развития - овогенез характеризуется длительной стадией роста - 1 исходная клетка в овогенезе дает начало 1 полноценной клетке и трём редукционным тельцам, из 1 сперматогонии в сперматогенезе образуется 4 сперматозоида. - образование зрелой яйцеклетки происходит вне половой железы, при оплодотворении. - овогенез характеризуется выраженной цикличностью. 43. Биологические и социальные аспекты старения и смерти организма. Генетические, молекулярные, клеточные и системные механизмы старения. Проблема долголетия. Понятие о геронтологии и гериатрии. Старение-это стадия индивидуального развития по достижению которой в организме наблюдаются закономерные изменения в физическом состоянии, внешнем виде. Состояние старости достигается благодаря изменениям , составляющим содержание процесса старения. Этот процесс захватывает все уровни структурной организации – молекулярный, субклеточный , клеточный, тканевой, органный. В результате этого происходит снижение жизниспособности, что приводит к повышению вероятности смертности. Биологический смысл старения заключается в том, что он делает неизбежной смерть организма. Наступлению биологической часто предшествует состояние клинической смерти, в котором клетки и ткани сохраняют достаточный уровень жизниспособности. Молекулярные и клеточные проявления старения многообразны. Отмечается снижение содержания ДНК и РНК, но состав их существенно не изменяется. Изменяются физико химические свойства белков хроматина клеточных ядер, увеличивается плотность связывания гистоновых белков с ДНК. Это может привести к репрессии некоторой части генома. При старении повреждаются все молекулярно –генетические процессы - транскрипция и трансляция наследственной информации, репликации и репарации ДНК. Это приводит к неизбежным ошибкам в ходе синтеза и преобразований макромолекул. Молекулярные изменения совместимые с жизнью клеток, существенно повреждают их функцию . Механизмы старения Согласно стохастическим гипотезам в основе старения лежит накопление ошибок и повреждений случайно возникающих в процессе жизнидеятельности индивида на разных уровнях его организации. Согласно программным гипотезам старение детерминировано генетически , тоесть информация о начале и содержании его представлена в геноме клеток. Эти гипотезы основаны на допущении что в организме функционируют своеобразные часы. В основе этих часов могут лежать запрограммированное число делений в клоне клеток. Проблема долголетия. Продолжительность жизни как житейская проблема связывается в нашем сознании с возможностью пережить период зрелости и дожить до приклонного возраста. Рост средней продолжительности жизни в экономически развитых странах связан с повышением жизненного уровня, качества питания, медицинской помощи, улучшением санитарно гигиенических и эпидемиологических условий. Так же продолжительность жизни отличается исключительной индивидуальной изменьчивостью. Геронтология- это наука изучающая биологические и социальные аспекты старения человека его причины и способы борьбы с ними.Гериатрия – это частный раздел геронтологии занимающийся изучением профилактикой и лечением болезней старческого возраста 45. Подытоживая все, можно привести сравнительную характеристику овогенеза и сперматогенеза. В сущности, это и будут особенности сперматогенеза и овогенеза. 1. Мы выяснили, что гаметогенез включает стадии размножения, роста и созревания клеток. Сперматогенез включает также стадию формирования (ее нет при овогенезе), в этом заключаются отличия сперматогенеза от овогенеза. Сперматозоиды проходят дополнительную четвертую стадию для того, чтобы приобрести своеобразную форму и сформировать аппарат движения. 2. Второе отличие сперматогенеза от овогенеза: из сперматоцита I порядка получается четыре половых клетки, а из ооцита I порядка получается одна полноценная половая клетка. 3. Яйцеклетки образуются циклически, процесс повторяется через 21-35 дней (менструальный цикл). После гибели яйцеклетки, что сопровождается кровотечением, изменившийся гормональный фон дает толчок к созреванию другой яйцеклетки. Сравнительная характеристика овогенеза и сперматогенеза показывает, что у женщин мейоз начинается в период внутриутробного развития. Ооциты I порядка у новорожденной девочки останавливаются в фазе мейоз I, и завершается созревание ооцита к моменту полового созревания. У мальчиков процесс образования сперматозоидов идет непрерывно и сохраняется в течение всей половой зрелости мужчины. 4. Из характеристики овогенеза и сперматогенеза следует, что существуют значительные различия в количестве образованных половых клеток в женском и мужском организме. Взрослый мужчина производит 30 миллионов спермиев в день, а женщина - порядка 500 зрелых яйцеклеток за всю свою жизнь. 5. Различия сперматогенеза и овогенеза заключаются также в том, что стадия размножения при сперматогенезе идет постоянно, а при овогенезе заканчивается после рождения. 6. Стадия роста при сперматогенезе короче, чем при овогенезе. 7. Стадия созревания при овогенезе имеет особенности, которые заключаются в неравномерности делений при созревании, что приводит к выделению полярных телец, что отсутствует при сперматогенезе. 8. Различия сперматогенеза и овогенеза заключаются в том, что сперматогенез более подвержен влиянию внешней среды, нежели овогенез, что связано с различием в расположении половых органов - семенники находятся вне брюшной полости. 9. Из сравнительной характеристики овогенеза и сперматогенеза можно увидеть, что, поскольку образование яйцеклеток начинается еще до рождения девочки, а завершается для яйцеклетки только после ее оплодотворения, то неблагоприятные факторы внешней среды могут повлечь генетические аномалии у потомства. 46. Регенерация как свойство живого к самообновлению и восстановлению. Физиологическая регенерация, ее биологическое значение. Регенерация – свойство всех живых организмов со временем восстанавливать поврежденные ткани, а иногда и целые потерянные органы. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической. Физиологическая регенерация: у человека постепенно обновляется наружный слой кожи. В каждом органе на протяжении всей жизни постоянно идут восстановление и обновление. Репаративная регенерация: происходит после повреждения или утраты какой-либо части тела. Она подразделяется на типичную (утраченная часть замещается путем развития точно такой же части) и атипичная (утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно). Волосы, ногти, клетки печени, эпидермис способны к регенерации и др 49. Репаративная регенерация и способы ее осуществления. Проявление репаративной способности в филогенезе. Соматический эмбриогенез. Репаративная регенерация – восстановление поврежденных тканей и органов после чрезвычайных воздействий. При полной регенерации восстанавливается полное исходное строение ткани после ее повреждения, её архитектура остается неизменной. Распространена у организмов, способных к бесполому размножению. Например, белая планария, гидра, моллюски (если удалить голову, но оставить нервно – узловую структуру). Типичная репаративная регенерация возможна у высших организмов, в т.ч. и человека. Например, при устранении некротических клеток органов. В острой стадии пневмонии происходит деструкция альвеол и бронхов, затем происходит восстановление. При действии гепатотропных ядов возникают диффузные некротические изменения печени. После прекращения действия ядов восстанавливается архитектоника за счет деления гепатоцитов – клеток печеночной паренхимы. Восстанавливается исходная структура. Гомоморфоз – восстановление структуры в том виде, в котором она существовала до разрушения. Неполная репаративная регенерация – регенерированный орган отличается от удаленного - гетероморфоз. Исходная структура не восстанавливается, а иногда вместо одного органа развивается другой орган. Например, глаз у рака. При удалении в некоторых случаях развивается антенна. У человека печень при удалении части печеночной доли аналогично регенерирует. Возникает рубец и через 2 - 3 месяца после операции масса печени восстанавливается, а восстановления формы органа не происходит. Это происходит из-за удаления и повреждения соединительной ткани во время операции. Соматический эмбриогенез – развитие нового организма из отдельных соматических клеток. Разновидность вегетативного размножения у животных, низшей ступени организации. 48. Оплодотворение, слияние мужской половой клетки (сперматозоида) с женской (яйцом, яйцеклеткой), приводящее к образованию зиготы — нового одноклеточного организма. Биологический смысл оплодотворения состоит в объединении ядерного материала мужской и женской гамет, что приводит к объединению отцовских и материнских генов, восстановлению диплоидного набора хромосом, а также активации яйцеклетки, то есть стимуляции её к зародышевому развитию. Соединение яйцеклетки со сперматозоидом обычно происходит в воронкообразно расширенной части маточной трубы в течение первых 12 часов после овуляции. Семенная жидкость (сперма), попадая во влагалище женщины при половом сношении (коитусе), обычно содержит от 60 до 150 млн сперматозоидов, которые благодаря движениям со скоростью 2 — 3 мм в минуту, постоянным волнообразным сокращениям матки и труб и щелочной среде уже спустя 1 — 2 минуты после полового акта достигают матки, а через 2 — 3 часа — концевых отделов маточных труб, где обычно и происходит слияние с яйцеклеткой. Различают моноспермное (в яйцеклетку проникает один сперматозоид) и полиспермное (в яйцеклетку проникают два и более сперматозоидов, но с ядром яйцеклетки сливается только одно ядро сперматозоида) оплодотворение. Сохранению активности спермиев во время прохождения их в половых путях женщины способствует слабощелочная среда шеечного канала матки, заполненного слизистой пробкой. Во время оргазма при половом акте слизистая пробка из шеечного канала частично выталкивается, а затем вновь втягивается в него и тем самым способствует более быстрому попаданию сперматозоидов из влагалища (где в норме у здоровой женщины среда слабокислая) в более благоприятную среду шейки и полости матки. Прохождению сперматозоидов через слизистую пробку шеечного канала способствует и резко повышающаяся в дни овуляции проницаемость слизи. В остальные дни менструального цикла слизистая пробка имеет значительно меньшую проницаемость для сперматозоидов. плодотворению 48 — 72 часа (иногда даже до 4 — 5 суток). Овулировавшая яйцеклетка сохраняет жизнеспособность примерно 24 часа. Учитывая это, наиболее благоприятным временем для оплодотворения считается период разрыва созревшего фолликула с последующим рождением яйцеклетки, а также 2 — 3-й день после овуляции. Вскоре после оплодотворения начинается дробление зиготы и образование зародыша. ПОЛОВОЙ ДИМОРФИЗМ (от греч. di-, в сложных словах — вдвое, дважды, и morphe — форма), различия признаков муж. и жен. особей раздельнополых видов; частный случай полиморфизма. Возникновение П. д. связано с действием полового отбора. У многоклеточных животных П. д. полностью развивается к периоду половой зрелости и связан гл. обр. с различиями в строении половых органов, а также с различием вторичных половых признаков. Различают постоянный и сезонный П. д. Постоянный — мало зависит или не зависит от сезонных условий. Он характерен для мн. беспозвоночных (особенно червей, членистоногих) и позвоночных; напр., у одних животных самцы значительно мельче самок, у других, наоборот, они крупнее. У самцов признаки П. д. бывают связаны с приспособлениями для удержания самки при копуляции (напр., присоски на передних ногах жука-плавунца), у самок — с откладыванием яиц, выкармливанием детёнышей (напр., яйцеклад у мн. насекомых, млечные железы у млекопитающих). Нередко самцы окрашены ярче самок (мн. бабочки, птицы и др.), что связано с покровительств. окраской и меньшей подвижностью самок, чаще осуществляющих заботу о потомстве. Проявлением П. д. являются и такие вторичные половые признаки, как «рога» жуков-оленей, бивни самцов нарвала и слона, рога самцов мн. оленей и др., представляющие оружие для «турнирных боёв» за самку. Сезонный П. д., или брачный наряд, проявляюшийся только в период размножения, известен у мн. рыб (напр., яркая расцветка самца у гольяна) и земноводных (напр.. развитие гребия и яркой расцветки у сампа тритона). У человека П. д., кроме различий в строении половых органов, выражается в более мощном развитии у мужчин скелета и мускулатуры, волосяного покрова на лице и ряде др. признаков, у женщин — в развитии грудных желёз, большей ширине бёдер и др. У цветковых растений постоянный П. д. наиб, ярко выражен у двудомных, напр. конопли, у к-рой муж. особи (посконь) отличаются от жен. (матерка) меньшей длиной стебля, менее густой листвой, большим выходом волокна. У ряда двудомных растений (ивы, эвкоммии и др.) П. д. выражен только в разл. строении муж. и жен. цветков. 51. Партеногенез (от греч. παρθενος — девственница и γενεσις — рождение, у растений — апомиксис) — так называемое «девственное размножение», одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются во взрослый организм без оплодотворения. Хотя партеногенетическое размножение не предусматривает слияния мужских и женских гамет, партеногенез все равно считается половым размножением, так как организм развивается из половой клетки. Считается, что партеногенез возник в процессе эволюции организмов у раздельнополых форм. В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ партеногенеза заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. Такой способ размножения используется некоторыми животными (хотя чаще к нему прибегают относительно примитивные организмы). В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых — самцы, партеногенез способствует регулированию численных соотношений полов (например, у пчёл). Часто партеногенетические виды и расы являются полиплоидными и возникают в результате отдалённой гибридизации, обнаруживая в связи с этим гетерозис и высокую жизнеспособность. Партеногенез следует относить к половому размножению и следует отличать от бесполого размножения, которое осуществляется всегда при помощи соматических органов и клеток (размножение делением, почкованием и т. п.). Классификации партеногенеза Существует несколько классификаций партеногенетического размножения. По способу размножения Естественный — нормальный способ размножения некоторых организмов в природе. Искусственный — вызывается экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении. По полноте протекания Рудиментарный (зачаточный) — неоплодотворённые яйцеклетки начинают деление, однако зародышевое развитие прекращается на ранних стадиях. Вместе с тем в некоторых случаях возможно и продолжение развития до конечных стадий (акцидентальный или случайный партеногенез). Полный — развитие яйцеклетки приводит к формированию взрослой особи. Эта разновидность партеногенеза наблюдается во всех типах беспозвоночных и у некоторых позвоночных. По наличию мейоза в цикле развития Амейотический — развивающиеся яйцеклетки не проделывают мейоза и остаются диплоидными. Такой партеногенез (например, у дафний) является разновидностью клонального размножения. Мейотический — яйцеклетки проделывают мейоз (при этом они становятся гаплоидными). Новый организм развивается из гаплоидной яйцеклетки (самцы перепончатокрылых насекомых и коловраток), или яйцеклетка тем или иным способом восстанавливает диплоидность (например, путём эндомитоза или слияния с полярным тельцем) По наличию других форм размножения в цикле развития Облигатный — когда он является единственным способом размножения Циклический — партеногенез закономерно чередуется с другими способами разножения в жизненном цикле (напрмер, у дафний и коловраток). Факультативный — встречающийся в виде исключения или запасного способа размножения у форм, в норме двуполых. В зависимости от пола организма Гиногенез — партеногенез самок Андрогенез — партеногенез самцов 52. Регенерация органов и тканей представляет актуальную медико-биологическую проблему, имеющую самое прямое отношение к различным областям медицины. Последствия травм, оперативных вмешательств, поражений органов при различных патологических процессах тесным образом связаны с регенерацией и компенсацией функций. Заживление кожных ран после травм и ожогов, переломов костей, восстановление повреждений внутренних органов после перенесенных заболеваний невозможны без способности этих органов и поврежденных тканей к регенерации. Поэтому биологи изучают эту проблему как неотъемлемое свойство живых систем, а врачи видят в восстановительной способности организма надежного союзника в борьбе за здоровье человека. Познать сущность регенерационных процессов и на основе этого управлять замечательной способностью организма к восстановлению - это значит существенно расширить наши лечебные возможности. Биологическое значение регенерации заключается в том, что благодаря способности к регенерации организм может существовать в течение длительного времени в меняющейся окружающей среде и приспосабливаться к ее воздействиям, сохраняя внутреннее постоянство и жизнеспособность даже после повреждений, не являющихся губительными. Проявление репаративной способности у человека. Биологическое и медицинское значение проблемы регенерации. При разрезе в рану устремляется кровь, лейкоциты которой запускают воспалительный процесс. Клетки прилежащей эпителиальной ткани делятся и образуют «струп» (рубец). Потом начинается процесс заживления. В настоящее время интенсивно изучаются проблемы регенерации, особенно связанные с медициной. Стволовые клетки обладают свойствами:стволовая клетка не является окончательно дифференцированной (она скорее детерминирована); стволовая клетка способна к неограниченному делению; при делении часть клеток остается стволовыми, другая часть подвергается процессу дифференцировки. Центров по применению стволовых клеток очень мало, в России существует только 2 таких центра. Однако стволовые клетки есть везде. Для лечения и экспериментов берется пуповинная кровь с целью получения стволовых клеток. Кости черепа в норме не регенерируют. Под руководством И.И.Полежаева происходило удаление участка 10х10 см черепа собаки. Из кости получали путем измельчения костные опилки, которые помещали на рану. В другом эксперименте использовали костные опилки донора и кровь реципиента. Через неделю происходило рассасывание опилок, а к концу 1 года рана зарастала.Большое значение имеет регенерация после радиоактивного облучения. Малые дозы стимулируют, а большие, наоборот ингибируют данный процесс. Если провести механическое раздавливание культи или помещение ее в кислоту – регенерация идет в 50% случаев. Елизаров проводил ломку и удлинение костей. Им были созданы уникальные аппараты, благодаря которым было возможно раздвижение костей скелета и коррекция их формы.Остро стоит проблема регенерации печени. При циррозе печени приходится проводить ее частичное удаление. Иногда подобная операция проводится несколько раз, печень быстро регенерирует без сохранения формы, сохраняя функцию и общую массу. 54. Размножение – это способность организмов производить себе подобных особей того же вида. Существует два типа размножения: половое и бесполое. Древнейшим способом размножения на Земле было бесполое размножение. Бесполое размножение. Бесполое размножение происходит без образования специальных клеток, в нём участвует один организм, одна особь, при этом размножении образуются идентичные потомки. Единственным источником генетической изменчивости являются случайные мутации. Цитологической основой бесполого размножения является митоз. Молекулярной основой бесполого размножения является репликация ДНК. Бесполое размножение у различных живых организмов может происходить по-разному. Формы бесполого размножения: 1. Почкование – это форма бесполого размножения при которой новая особь образуется в виде выростов (почки) на теле родительской особи, а затем отделяется от неё и превращается в самостоятельную особь (гидра, дрожжи). 2. Фрагментация – это разделение особи на две или более частей, каждая из которых растёт и образуется отдельная особь (высшие растения, губка, дождевой червь). 3. Образование спор. Спора – это одноклеточная репродуктивная единица, состоящая из ядра и небольшого количества цитоплазмы под плотной оболочкой. Из споры образуется новая особь (низшие растения). 4. Деление. Бинарное деление клетки на две части. Ядро родительской особи один или несколько раз делится митозом, при этом образуется два или несколько дочерних ядер. Каждое из них окружается цитоплазмой и развивается в самостоятельный организм. 5. Шизогония – это множественное деление клетки. Сначала в клетке многократно делится ядро, затем вокруг каждого ядра обособляется участок цитоплазмы, который окружается плазматической мембраной. Затем происходит распад на отдельные клетки (малярийный плазмодий). 6. Вегетативное размножение. Осуществляется формирование дочернего организма из группы клеток материнского организма. У растений это размножение происходит за счёт вегетативных органов: корневищ, луковиц, клубней, усов. В результате бесполого размножения образуются генетически идентичные особи. Скорость размножения очень высокая и в постоянных условиях организма быстро захватывают экологическую нишу. Половое размножение. Появилось половое размножение более 3 млрд. лет назад. Сущность полового размножения в перекомбинации генетического материала родительских особей. В результате дочерние особи становятся более разнообразными, и естественный отбор выбирает из них наиболее приспособленные. При половом размножении потомство получается в результате слияния гаплоидных клеток – гамет. При оплодотворении образуется зигота. Из которой развивается новый организм. Оплодотворение – это процесс слияния сперматозоида с яйцеклеткой с последующим слиянием их ядер и образованием диплоидной зиготы. Биологическое значение этого процесса состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признак обоих родительских организмов. Гаметы гаплоидны, они содержат половинный набор хромосом и образуются в результате мейоза. Одной из модификаций полового размножения является партеногенез. Партеногенез – это процесс, при котором женская гамета развивается в новую особь без оплодотворения (встречается у животных (пчёлы) и растений). Преимущество в том, что увеличивается скорость размножения Эволюция размножения стала важной движущей силой общей эволюции царства растений и привела к возникновению новых специализированных органов. Бесполое размножение — наиболее древний и, несомненно, изначальный способ размножения. Оно представлено у всех групп растений, включая покрытосеменные Наиболее примитивный способ бесполого размножения — вегетативное. Его наблюдают на самых ранних этапах развития жизни — у доклеточных. У многих предъядерных (например, у бактерий) это и сейчас единственный способ размножения. Каждая крупная естественная группа растений нередко обладает свойственными только ей формами вегетативного размножения. Так, у сине-зеленых водорослей это гормогонии, у лишайников — изидии и соредии, у грибов — хламидоспоры и почкование, у некоторых моховидных— выводковые тельца. Наиболее разнообразны формы вегетативного размножения у высших растений, особенно у покрытосеменных. Велико разнообразие спор собственно бесполого размножения. В процессе эволюции они утратили способность воспроизводить новую особь, сходную с материнской (спорофит), а дают начало половому поколению (гаметофиту). Половое размножение возникло на очень ранних этапах эволюции, но время его появления точно не установлено. У некоторых современных примитивных групп растений половой процесс неизвестен. Не вызывает сомнений, что такие природные группы, как сине-зеленые водоросли и большинство бактерий, никогда не имели полового размножения. Другие, например некоторые грибы, возможно, утратили его. Половой процесс утрачен и у некоторых высокоорганизованных растений, например у покрытосеменных (партеногенез). В настоящее время наука еще не располагает достаточными данными для воспроизведения полной картины эволюции полового процесса у растений. Твердо установлено, что у растений, стоящих на более низкой ступени эволюции, половой процесс протекает в более примитивной форме, чем у растений, стоящих на более высокой ступени эволюции. Один из показателей уровня эволюции — специализация гамет. Наиболее примитивен изогамный половой процесс. Более высокий уровень — гетерогамия. Наиболее специализированным половым процессом считают оогамию. Мужская гамета теряет подвижность, приспособившись к наземным условиям жизни, и доставляется к яйцеклетке пыльцевой трубкой. Таким образом, у семенных растений половой процесс не связан с наличием водной среды, это — приспособление к сухопутному образу жизни. Половое размножение развивалось не изолированно от бесполого, а во взаимной связи с ним. Каждая природная группа растений в жизненном цикле имеет свою закономерность смены бесполого и полового размножения. У многих низших растений смена ядерных фаз не выражена, спорофит почти полностью выпадает из жизненного цикла (диплоидна лишь зигота). В жизненном цикле некоторых низших растений и всех высших существует чередование спорофита и гаметофита. Степень их морфологической разнородности и преобладания в жизненном цикле служит важным показателем эволюционного уровня изучаемой группы растений. На основании работ В. Гофмейстера (1849, 1851) установлена важная общая закономерность: в процессе эволюции спорофит приобретает всё большее развитие и самостоятельность; гаметофит, напротив, все более редуцируется, полностью теряет свою самостоятельность и всецело зависит от спорофита, что и наблюдают у наиболее высокоорганизованных семенных растений — голосеменных и покрытосеменных. В. Гофмейстер, изучая жизненные циклы различных природных групп растений, показал, что между высшими споровыми и покрытосеменными нет такого большого разрыва, как предполагали ранее. 64. Геном — вся совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Он обеспечивает формирование видовых характеристик организмов в ходе их онтогенеза. Генотип — совокупность генов, образованная при половом размножении в процессе оплодотворения при объединении геномов двух родительских клеток, генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе — кариотипе. Фенотип — видовые и индивидуальные морфологические, физиологические и биохимические свойства на всем протяжении индивидуального развития. Ведущая роль в формировании фенотипа — наследственная информация, заключенная в генотипе. Наряду с этим результат наследственной программы (в генотипе) зависит от условий, в которых осуществляется этот процесс. В случае гетерозиготности развитие данного признака будет зависеть от взаимодействия аллельных генов. Доминирование — это такое взаимодействие аллельных генов, при котором проявление одного из аллелей (А) не зависит от присутствия в генотипе другого (А’). Этот аллель доминантный, второй рецессивный (пример: группа крови). Неполное доминирование — фенотип гетерозигот ВВ’ отличается от фенотипа гомозигот по обеим аллелям (ВВ, В’В’) промежуточным проявлением признака. Это происходит, т.к. аллель, способная сформировать нормальный признак находится у гетерозигот в двойной дозе ВВ, а у гомозигот ВВ’. Генотипы отличаются экспрессивностью (степень выраженности признака). Пример: заболевания у человека, проявляющиеся клинически у гетерозигот, а у гомозигот заканчивающиеся смертью. Кодоминирование — каждый из аллелей проявляет свое действие, в результате — промежуточный вариант признака (Группа крови, аллели которые по отдельности формируют 2 и 3 группы крови, вместе образуют 4). Аллельное исключение — вид взаимодействия аллельных генов в генотипе. Например, инактивация одного из аллелей в сосотаве Х-хромосомы способствует тому, что разных клетках организма, мозаичных по функционирующей хромосоме, фенотипически проявляются разные аллели. 55. Наследственность — свойство клеток или организмов в процессе самовоспроизведения передавать новому поколению способность к определенному типу обмена веществ и индивидуального развития, в ходе которого у них формируется общие признаки и свойства данного типа клеток и видов организмов, а также некоторые индивидуальные особенности родителей. Изменчивость — свойство живых систем приобретать изменения и существовать в различных вариантах. Несмотря на то, что по своим результатам наследственность и изменчивость разнонаправлены, в живой природе эти два фундаментальных свойства образуют неразрывное единство, чем достигается одновременно сохранение в процессе эволюции имеющихся биологически целесообразных качеств и возникновение новых, делающих возможным существование жизни в разнообразных условиях. Таким образом, частичный материал должен обладать способностью к самовоспроизведению, чтобы в процессе размножения передавать наследственную информацию, на основе которой будет осуществлено формирование нового поколения. Для обеспечения устойчивости характеристик в ряду поколений наследственный материал должен сохранять постоянно свою организацию. Также он должен обладать способностью приобретать изменения и воспроизводить их, обеспечивая возможность исторического развития живой материи в имеющихся условиях. Репарация — молекулярное восстановление. Механизм репарации основан на наличие в молекуле ДНК двух комплементарных цепей. Искажение последовательности нуклеотидов в одной из них обнаруживается специфическими ферментами. Затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК. Каждая хромосома представляет собой группу сцепления, их число равно гаплоидному набору хромосом. Диплоидный набор хромосом содержит 46 хромосом. Генетическая информация — информация о строении белков, закодированная с помощью последовательности нуклеотидов, посредством генетического кода — в генах (особых функциональны участках молекул ДНК и РНК). Свойства ГИ: хранение — ГИ содержится как в соматических, так и в половых клетка; в соматических хранится диплоидный набор хромосом, в половых клетках гаплоидный набор хромосом; изменение — изменение ГИ происходит за счет мутационной изменчивости (генные, геномные и хромосомные мутации) и комбинативной изменчивости (конъюгация и кроссинговер); репарация — свойства ДНК исправлять химические повреждения и разрывы в молекулах; передача ГИ — непосредственная передача в процессе размножения, т.е. слияния половых клеток, вос-ся диплоидный набор хромосом; реализация ГИ — процесс воплощения ГИ в биологически активных веществах — РНК и белках. 56. Несмотря на то, что живой организм - открытая система, обменивающаяся веществом и энергией с окружающей средой и существующая в единстве с ней, он сохраняет себя во времени и в пространстве как отдельную биологическую единицу, сохраняет своё строение (морфологию), поведенческие реакции, специфические физико-химические условия в клетках, тканевой жидкости. Способность живых систем противостоять изменениям и сохранять динамическое постоянство состава и свойств получила название гомеостаза. Термин «гомеостаз» предложил У. Кеннон в 1929 году. Однако идея о существовании физиологических механизмов, обеспечивающих поддержание постоянства внутренней среды организмов, была высказана ещё во второй половине XIX века К. Бернаром. Гомеостаз совершенствовался в ходе эволюции. У многоклеточных появилась внутренняя среда, в которой находятся клетки различных органов и тканей. Затем образовались специализированные системы органов (кровообращения, питания, дыхания, выделения и др.), участвующие в обеспечении гомеостаза на всех уровнях организации (молекулярном, субклеточном, клеточном, тканевом, органном и организменном). Наиболее совершенные механизмы гомеостаза сформировались у млекопитающих, что способствовало значительному расширению возможностей их приспособления к окружающей среде. Механизмы и виды гомеостаза складывались в процессе длительной эволюции, закрепляясь генетически. Появление в организме чужеродной генетической информации, которая часто вносится бактериями, вирусами, клетками других организмов, а также собственными мутировавшими клетками, может существенно нарушить гомеостаз организма. Как защита от чужеродной генетической информации, проникновение которой внутрь организма и последующая её реализация привели бы к отравлению токсинами (чужеродными белками), возник такой вид гомеостаза, как генетический гомеостаз, обеспечивающий генетическое постоянство внутренней среды организма. В его основе лежат иммунологические механизмы, включающие неспецифическую и специфическую защиту собственной целостности и индивидуальности организма. Неспецифические механизмы лежат в основе врождённого, конституционального, видового иммунитета, а также индивидуальной неспецифической резистентности. К ним относят барьерную функцию кожи и слизистых оболочек, бактерицидное действие секрета потовых и сальных желез, бактерицидные свойства содержимого желудка и кишечника, лизоциму секрета слюнных и слезных желез. Если же организмы проникают во внутреннюю среду, то устраняются в ходе воспалительной реакции, которая сопровождается усиленным фагоцитозом, а также вирусостатическим действием интерферона (белка с молекулярным весом 25000 - 110000). Специфические иммунологические механизмы лежат в основе приобретённого иммунитета, осуществляемого иммунной системой, которая распознаёт, перерабатывает и устраняет чужеродные антигены. Гуморальный иммунитет осуществляется посредством образования антител, циркулирующих в крови. В основе клеточного иммунитета лежит образование Т-лимфоцитов, появление долгоживущих Т- и В-лимфоцитов «иммунологической памяти», возникновение аллергии (повышенной чувствительности к специфическому антигену). У человека защитные реакции вступают в действие только на 2-ой неделе жизни, достигают наивысшей активности к 10 годам, с 10 до 20 лет несколько уменьшаются, с 20 до 40 лет остаются примерно на одном уровне, затем постепенно угасают. Механизмы иммунологической защиты являются серьёзным препятствием при трансплантации органов, вызывая рассасывание трансплантанта. Наиболее успешными являются в настоящее время результаты аутотрансплантации (пересадки тканей в пределах организма) и аллотрансплантации между однояйцевыми близнецами. Гораздо менее успешны они при межвидовой трансплантации (гетеротрансплантация или ксенотрансплантация). Другой вид гомеостаза - биохимический гомеостаз способствует поддержанию постоянства химического состава жидкой внеклеточной (внутренней) среды организма (крови, лимфы, тканевой жидкости), а также постоянства химического состава цитоплазмы и плазмолеммы клеток. Физиологический гомеостаз обеспечивает постоянство процессов жизнедеятельности организма. Благодаря ему возникли и совершенствуются изоосмия (постоянство содержания осмотически активных веществ), изотермия (поддержание в определённых пределах температуры тела птиц и млекопитающих) и др. Структурный гомеостаз обеспечивает постоянство строения (морфологической организации) на всех уровнях (молекулярном, субклеточном, клеточном и т.д.) организации живого. Популяционный гомеостаз обеспечивает постоянство численности особей в популяции. Биоценотический гомеостаз способствует постоянству видового состава и численности особей в биоценозах. В связи с тем, что организм функционирует и взаимодействует со средой как единая система, процессы, лежащие в основе различных видов гомеостатических реакций, тесно взаимосвязаны друг с другом. Отдельные гомеостатические механизмы объединяются и реализуются в целостной приспособительной реакции организма как единого целого. Такое объединение осуществляется благодаря деятельности (функции) регуляторных интегрирующих систем (нервной, эндокринной, иммунной). Наиболее быстрые изменения состояния регулируемого объекта обеспечиваются нервной системой, что связано с быстротой процессов возникновения и проведения нервного импульса (от 0,2 до 180 м/сек). Регуляторная функция эндокринной системы осуществляется медленнее, так как ограничена скоростью выделения гормонов железами и их переноса в кровеносном русле. Однако результат воздействия на регулируемый объект (орган) накапливающихся в нём гормонов значительно более продолжительный, чем при нервной регуляции. Организм - саморегулирующаяся живая система. Благодаря наличию гомеостатических механизмов организм представляет собой сложную саморегулирующуюся систему. Принципы существования и развития таких систем изучает кибернетика, а живых систем - биологическая кибернетика. В основе саморегуляции биологических систем лежит принцип прямой и обратной связи. Информация об отклонении регулируемой величины от заданного уровня по каналам обратной связи передаётся регулятору и изменяет его деятельность таким образом, что регулируемая величина возвращается к исходному (оптимальному) уровню (рис.122). Обратная связь бывает отрицательной (когда регулируемая величина отклонилась в положительную сторону (синтез вещества, например, чрезмерно увеличился)) и положи- тельной (когда регулируемая величина отклонилась в отрицательную сторону (вещество синтезируется в недостаточном количестве)). Этот механизм, а также более сложные комбинации нескольких механизмов имеют место на разных уровнях организации биологических систем. В качестве примера их функционирования на молекулярном уровне можно указать ингибирование ключевого фермента при избыточном образовании конечного продукта или репрессию синтеза ферментов. На клеточном уровне механизмы прямой и обратной связи обеспечивают гормональную регуляцию и оптимальную плотность (численность) клеточной популяции. Проявлением прямой и обратной связи на уровне организма является регуляция содержания глюкозы в крови. В живом организме механизмы автоматического регулирования и управления (изучаемые биокибернетикой) особо сложные. Степень их усложнения способствует повышению уровня «надёжности» и устойчивости живых систем по отношению к изменениям окружающей среды. Механизмы гомеостаза дублируются на разных уровнях. Этим в природе реализуется принцип многоконтурности регуляции систем. Главные контуры представлены клеточными и тканевыми гомеостатическими механизмами. Им свойственна высокая степень автоматизма. Основная роль в управлении клеточными и тканевыми гомеостатическими механизмами принадлежит генетическим факторам, местным рефлекторным влияниям, химическим и контактным взаимодействиям между клетками. Механизмы гомеостаза претерпевают значительные изменения на протяжении онтогенеза человека. Только на 2-ой неделе после рождения вступают в действие биологические защитные реакции (образуются клетки, обеспечивающие клеточный и гуморальный иммунитет), а их эффективность продолжает повышаться к 10 годам. В этот период совершенствуются механизмы защиты от чужеродной генетической информации, а также повышается зрелость нервной и эндокринной регуляторных систем. Наибольшей надёжности механизмы гомеостаза достигают в зрелом возрасте, к концу периода развития и роста организма (19-24 года). Старение организма сопровождается снижением эффективности механизмов генетического, структурного, физиологического гомеостаза, ослаблением регуляторных влияний нервной и эндокринной систем. 58. Изучение генетики человека связаны с большими трудностями: сложный кариотип – много хромосом и групп сцепления; позднее половое созревание и редкая смена поколений; малое количество потомков; невозможность экспериментирования; невозможность создания одинаковых условий жизни. Несмотря на перечисленные трудности, генетика человека изучена лучше многих других благодаря потребностям медицины и разнообразным современным методам исследования. |