Главная страница

Живая природа


Скачать 224.14 Kb.
НазваниеЖивая природа
Дата22.07.2019
Размер224.14 Kb.
Формат файлаdocx
Имя файлаbiologia.docx
ТипДокументы
#84365
страница4 из 6
1   2   3   4   5   6


61.

В основе генеалогического метода, предложенного в конце XIX века Ф.Гальтоном, лежит составление родословных, на основании выявления всех членов анализируемой семьи, установления степени их родства, и прослеживания того или иного признака в ряду поколений.

Применительно к целям медицинской генетики этот метод часто называют клинико-генеалогическим, так как наибольший интерес исследователей в этой области вызывает изучение сегрегации патологического симптома или болезни. Клинико-генеалогический метод наиболее универсальный и поэтому используется для решения широкого круга задач медицинской генетики. Несмотря на появление новых лабораторных методов, анализ родословных не потерял своей актуальности и успешно применяется для установления наследственного характера признаков и заболеваний. Правильно составленная родословная с выявлением всех членов семьи, установлением между ними родственных связей и оценкой состояния их здоровья позволяет с достаточно высокой вероятностью установить тип наследования и определить пенетрантность и экспрессивность мутантного гена.

Тщательный анализ клинических проявлений заболевания у больных из одной и той же семьи может быть использован при расшифровке механизмов взаимодействия генов. Например, если в семье отмечаются различия в тяжести и особенностях клинических проявлений заболевания с аутосомно-доминантными типом наследования у родителя и потомков, то можно предположить наличие модифицирующего влияния рецессивного аллеля здорового родителя на патологический аллель с доминантным эффектом. Продемонстрируем это на примере родословной, представленной на рисунке.

В данной ядерной семье отец и двое его сыновей страдают заболеванием с аутосомно-доминантным типом наследования, возникновение которого обусловлено мутацией в аллеле гена А, обладающего доминантным эффектом в гетерозиготном состоянии. Второй, рецессивный, аллель, обнаруженный у больного отца, обозначим a 1. Если для данного гена существует система множественных аллелей, то здоровая мать больных сибсов может иметь различное сочетание рецессивных аллелей (в представленной родословной показано, что она имеет аллели а1 и а2). При выявлении различий в клинической картине заболевания у пораженного отца, имеющего генотип Аа1 и его детей с генотипом Аа2 можно предположить наличие модифицирующего влияния аллеля а2 на доминантный аллель А.

Клинико-генеалогический метод демонстрирует генетическую гетерогенность многих заболеваний, например, таких как альбинизм, тугоухость, наследственная моторно-сенсорная нейропатия идругих.

59.

Человека или животное, у которого берут орган или ткань для пересадки (трансплантации), называют донором, а организм, принимающий их,— реципиентом.

Аутотрансплантация, или аутологичная трансплантация — реципиенттрансплантата является егодоноромдля самого себя. Например, аутотрансплантация кожи с неповреждённых участков на обожжённые. Широко применяется при тяжёлыхожогах. Аутотрансплантациякостного мозгаили гемопоэтических стволовых клеток после высокодозной противоопухолевойхимиотерапиишироко применяется прилейкозах,лимфомахи химиочувствительныхзлокачественных опухолях.

Аллотранспланатация - пересадка органов и тканей от другой особи того же биологического вида (в медицине — от человека).

Гетеротрансплантация - пересадка тканей или органа от особи одного вида (донор) особи другого вида

Ксенотрансплантация - пересадку органов и тканей между двумя организмами разных видов (от животного человеку, напр, пересадка сосудов быка человеку взамен артерий, пораженных атеросклеротическим процессом).

Трансплантация может быть ортотопической и гетеротопической.

Ортотопическая трансплантация - пересадка, при которой орган или ткань помещают на место такого же отсутствующего или удаленного органа или ткани.

Гетеротопическая трансплантация - пересадка, при которой орган или ткань помещают на несвойственное им место.

Проблемы:

Проблема трансплантации сложна, многогранна и требует значительных совместных усилий различных специалистов: врачей и инженеров, химиков и физиков, биохимиков и физиологов

Каждый организм строго индивидуален, поэтому всякая ткань или орган, пересаженные в другой организм, воспринимаются им как чужеродное тело. Эта реакция на чужеродное тело вызывается специфическими веществами, находящимися в пересаженной ткани,— антигенами. Именно этой выраженной реакцией несовместимости объясняется частая гибель пересаженного органа

Этические проблемы пересадки органов от трупа:

Моральные проблемы получения органов от живых доноров. Живым донором может быть только кровный родственник реципиента. Медицинские работники не имеют права участвовать в операции по трансплантации, если они подозревают, что органы были предметом торговой сделки.

Пути решения:

В последние годы были найдены и успешно применены вещества или физические факторы, способные подавлять нежелательную реакцию иммунитета. Их назвали иммунодепрессантами. К ним относятся гормональные, некоторые химиотерапевтические препараты, рентгеновское облучение.

Пути преодоления несовместимости:

Существуют неспецифические и специфические методы преодоления тканевой несовместимости. К неспецифическим методам относятся:

1) подавление иммунологической реактивности реципиента. Для этой цели используют различные иммунодепрессанты.

2) создание иммунологической устойчивости организма хозяина к трансплантируемым тканям. С этой целью (только экспериментально) эмбрионам и новорожденным вводят различные дозы трансплантата, потом уже во взрослом состоянии — ткани.

К специфическим методам подавления тканевой несовместимости относятся:

1) подбор иммунологически совместимых пар донора и реципиента.

2) получение трансплантационного иммунитета у реципиента. Данный метод возможен лишь в условиях эксперимента. Оба метода не получили широкого применений.

3) «приучивание» реципиента к антигенам донора путем предварительных многократных взаимообменных переливаний крови донора и реципиента.

Искусственные органы:

почка, легкие, сердце, кожа, кости, суставы, сетчатка, кохлеарные импланты.

Один из самых необходимых искусственных органов — это почка.

Искусственная вентиляция легких (ИВЛ) – эффективное средство интенсивной терапии, обеспечивающее газообмен,

Искусственное сердце – механический прибор, который временно берет на себя функцию кровообращения, в случае если сердце пациента не может полноценно обеспечивать организм достаточным количеством крови. Существенным его недостатком является потребность в постоянной подзарядке от электросети.

Все эти устройства можно рассматривать как временную меру, пока пациент ждет орган для пересадки. Все они далеки от совершенства и доставляют больному массу неудобств.

66.

Близнецовый метод изучения генетики человека.

Введён в медицинскую пратику Ф. Гальтоном в 1876 г. Позволяет определить роль генотипа и среды в проявлении признака.

Различают моно- и дизиготных близнецов. Монозиготные (однояйцевые) близнецы развиваются из одной оплодотворённой яйцеклетки, имеют совершенно одинаковый генотип и, если отличаются фенотипически, то это обусловлено воздействием факторов внешней среды.

Дизиготные (двуяйцевые) близнецы развиваются послеоплодотворения сперматозоидами нескольких одновременно созревших яйцеклеток, близнецы будут иметь разный генотип и их фенотипические различия обусловлены как генотипом, так и факторами внешней среды.

Монозиготные близнецы имеют большую степень сходства по признакам, определяемым генотипом: они всегда однополы, имеют одинаковую группу крови, цвет глаз, дерматоглифический рисунок. Эти фенотипические признаки используют в каческтве критериев диагностики зиготности близнецов.

Процент сходства группы блинецов по изучаемому признаку называется конкордантностью, а прцент различия – дискордантностью.

Если параллельное развитие признака в парах однояйцевых близнецов наблюдается чаще, чем в парах разнояйцевых, это свидетельствует о его наследственной обусловленности. В случае, если частота параллельного развития признака существенно не различается в парах одно- и двухяйцевых близнецов, это подтверждает ведущую роль среды в его развитии. Изучение генетически однородных однояйцевых близнецов в случае воспитания их в разных условиях также позволяет выявить степень зависимости формирования различных признаков от среды. Конкордантность (пол, чвет глаз, группа крови, заболевание туберкулёзом и др.) полностью определяется генотипом. Дискордантность (косолапость, рак, гемофилия и др.) связана с влиянием среды.

Для оценки роли наследственности и среды в развитии того или иного признака используют формулу Хольцингера

Н = КМБ% - КДБ% / 100% - КДБ%

где Н – доля наследственности;

КМБ% - конкордантность монозиготных близнецов;

КДБ% - конкордантность дизиготных близнецов.

67.

Согласно синтетической теории эволюции, элементарное эволюционное явление, с которого начинается видообразование, заключается в изменении генетического состава (генетической конституции, или генофонда) популяции. События и процессы, способствующие преодолению генетической инертности популяций и приводящие к изменению их генофондов, называют элементарными эволюционными факторами. Важнейшими из них являются мутационный процесс, популяционные волны, изоляция, естественный отбор.

Мутационный процесс. Изменения наследственного материала половых клеток в виде генных, хромосомных и геномных мутаций происходят постоянно. Особое место принадлежит генным мутациям. Они приводят к возникновению серий аллелей и, таким образом, к разнообразию содержания биологической информации. Вклад мутационного процесса в видообразование носит двоякий характер. Изменяя частоту одного аллеля по отношению к другому, он оказывает на генофонд популяции прямое действие. Еще большее значение имеет формирование за счет мутантных аллелей резерва наследственной изменчивости. Это создает условия для варьирования аллельного состава генотипов организмов в последовательных поколениях путем комбинативной изменчивости. Благодаря мутационному процессу поддерживается высокий уровень наследственного разнообразия природных популяций. Совокупность аллелей, возникающих в результате мутаций, составляет исходный элементарный эволюционный материал. В процессе видообразования он используется как основа действия других элементарных эволюционных факторов.

Хотя отдельная мутация — событие редкое, общее число мутаций значительно. Допустим, что некая мутация возникает с частотой 1 на 100 000 гамет, количество локусов в геноме составляет 10 000, численность особей в одном поколении равна 10 000, а каждая особь производит 1000 гамет. При таких условиях по всем локусам за поколение в генофонде вида произойдет 106 мутаций. За среднее время существования вида, равное нескольким десяткам тысяч поколений, количество мутаций составит 1010. Большинство мутаций первоначально оказывает на фенотип особей неблагоприятное действие. В силу рецессивности мутантные аллели обычно присутствуют в генофондах "популяций в гетерозиготных по соответствующему локусу генотипах.

Благодаря этому достигается тройственный положительный результат: 1) исключается непосредственное отрицательное влияние мутантного аллеля на фенотипическое выражение признака, контролируемого данным геном; 2) сохраняются нейтральные мутации, не имеющие приспособительной ценности в настоящих условиях существования, но которые смогут приобрести такую ценность в будущем; 3) накапливаются некоторые неблагоприятные мутации, которые в гетерозиготном состоянии нередко повышают относительную жизнеспособность организмов (эффект гетерозиса). Таким образом создается резерв наследственной изменчивости популяции.

Доля полезных мутаций мала, однако их абсолютное количество в пересчете на поколение или период существования вида может быть большим. Допустим, что одна полезная мутация приходится на 1 млн. вредных. Тогда в рассматриваемом выше примере среди 106 мутаций за одно поколение 104 будет полезной. За время существования вида его генофонд обогатится 104 полезными мутациями.

.

69.

Дерматоглифика — наука, которая занимается изучением признаков узоров на коже ладонной стороны кистей и стоп человека.

Кожа ладонной стороны кистей имеет сложный рельеф — его образуют гребешки, и потому эту кожу называют «гребневой». Гребешки составляют характерные узоры, уникальные для каждого человека и неизменные в течение всей его жизни.

Метод дерматоглифики. Дерматоглифика - это оценка рисунка кожи. Различают дактилоскопию (рисунок кожи пальцев), пальмоскопию (строение ладони) и плантоскопию (строение подошв). По характеру кожного рисунка или строению ладоней и подошв можно сделать вывод о наличии того или иного наследственного заболевания (более подробно смотри здесь).

70.

Естественный отбор — процесс, посредством которого в популяции увеличивается число особей, обладающих максимальной приспособленностью (наиболее благоприятными признаками), в то время как количество особей с неблагоприятными признаками уменьшается. В свете современной синтетической теории эволюции естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов. Естественный отбор — единственная известная причина адаптаций, но не единственная причина эволюции. К числу неадаптивных причин относятся генетический дрейф, поток генов и мутации.

Термин «Естественный отбор» популяризовал Чарльз Дарвин, сравнивая данный процесс с искусственным отбором, современной формой которого является селекция. Идея сравнения искусственного и естественного отбора состоит в том, что в природе так же происходит отбор наиболее «удачных», «лучших» организмов, но в роли «оценщика» полезности свойств в данном случае выступает не человек, а среда обитания. К тому же, материалом как для естественного, так и для искусственного отбора являются небольшие наследственные изменения, которые накапливаются из поколения в поколение.

Механизм естественного отбора

В процессе естественного отбора закрепляются мутации, увеличивающие приспособленность организмов. Естественный отбор часто называют «самоочевидным» механизмом, поскольку он следует из таких простых фактов, как:

Организмы производят потомков больше, чем может выжить;

В популяции этих организмов существует наследственная изменчивость;

Организмы, имеющие разные генетические черты, имеют различную выживаемость и способность размножаться.

Такие условия создают конкуренцию между организмами в выживании и размножении и являются минимально необходимыми условиями для эволюции посредством естественного отбора. Таким образом, организмы с наследственными чертами, которые дают им конкурентное преимущество, имеют большую вероятность передать их своим потомкам, чем организмы с наследственными чертами, не имеющими подобного преимущества.

Центральное понятие концепции естественного отбора — приспособленность организмов. Приспособленность определяется как способность организма к выживанию и размножению, которая определяет размер его генетического вклада в следующее поколение. Однако главным в определении приспособленности является не общее число потомков, а число потомков с данным генотипом (относительная приспособленность). Например, если потомки успешного и быстро размножающегося организма слабые и плохо размножаются, то генетический вклад и, соответственно, приспособленность этого организма будут низкими.

Если какая-либо аллель увеличивает приспособленность организма больше, чем другие аллели этого гена, то с каждым поколением доля этой аллели в популяции будет расти. То есть, отбор происходит в пользу этой аллели. И наоборот, для менее выгодных или вредных аллелей — их доля в популяциях будет снижаться, то есть отбор будет действовать против этих аллелей[5]. Важно отметить, что влияние определённых аллелей на приспособленность организма не является постоянным — при изменении условий окружающей среды вредные или нейтральные аллели могут стать полезными, а полезные вредными.

Естественный отбор для черт, которые могут изменяться в некотором диапазоне значений (например, размер организма), можно разделить на три типа[7]:

Направленный отбор — изменения среднего значения признака в течение долгого времени, например увеличение размеров тела;

Дизруптивный отбор — отбор на крайние значения признака и против средних значений, например, большие и маленькие размеры тела;

Стабилизирующий отбор — отбор против крайних значений признака, что приводит к уменьшению дисперсии признака.

Частным случаем естественного отбора является половой отбор, субстратом которого является любой признак, который увеличивает успешность спаривания за счёт увеличения привлекательности особи для потенциальных партнёров. Черты, которые эволюционировали за счёт полового отбора, особенно хорошо заметны у самцов некоторых видов животных. Такие признаки, как крупные рога, яркая окраска, с одной стороны могут привлекать хищников и понижать выживаемость самцов, а с другой это уравновешивается репродуктивным успехом самцов с подобными ярко выраженными признаками.

Отбор может действовать на различных уровнях организации, таких как гены, клетки, отдельные организмы, группы организмов и виды. Причём отбор может одновременно действовать на разных уровнях. Отбор на уровнях выше индивидуального, например, групповой отбор, может приводить к кооперации.

Формы естественного отбора

Существуют разные классификации форм отбора. Широко используется классификация, основанная на характере влияния форм отбора на изменчивость признака в популяции.

Движущий отбор — форма естественного отбора, которая действует при направленном изменении условий внешней среды. Описали Дарвин и Уоллес. В этом случае особи с признаками, которые отклоняются в определённую сторону от среднего значения, получают преимущества. При этом иные вариации признака (его отклонения в противоположную сторону от среднего значения) подвергаются отрицательному отбору. В результате в популяции из поколения к поколению происходит сдвиг средней величины признака в определённом направлении. При этом давление движущего отбора должно отвечать приспособительным возможностям популяции и скорости мутационных изменений (в ином случае давление среды может привести к вымиранию).

Классическим примером движущего отбора является эволюция окраски у березовой пяденицы. Окраска крыльев этой бабочки имитирует окраску покрытой лишайниками коры деревьев, на которых она проводит светлое время суток. Очевидно, такая покровительственная окраска сформировалась за многие поколения предшествующей эволюции. Однако с началом индустриальной революции в Англии это приспособление стало терять свое значение. Загрязнение атмосферы привело к массовой гибели лишайников и потемнению стволов деревьев. Светлые бабочки на темном фоне стали легко заметны для птиц. Начиная с середины XIX века, в популяциях березовой пяденицы стали появляться мутантные темные (меланистические) формы бабочек. Частота их быстро возрастала. К концу XIX века некоторые городские популяции березовой пяденицы почти целиком состояли из темных форм, в то время как в сельских популяциях по-прежнему преобладали светлые формы. Это явление было названоиндустриальным меланизмом. Ученые обнаружили, что в загрязненных районах птицы чаще поедают светлые формы, а в чистых – темные. Введение ограничений на загрязнение атмосферы в 1950-х годах привело к тому, что естественный отбор вновь изменил направление, и частота темных форм в городских популяциях начала снижаться. В наше время они почти так же редки, как и до начала индустриальной революции.

Движущий отбор осуществляется при изменении окружающей среды или приспособлении к новым условиям при расширении ареала. Он сохраняет наследственные изменения в определённом направлении, перемещая соответственно и норму реакции. Например, при освоении почвы как среды обитания у различных неродственных групп животных конечности превратились в роющие.

Стабилизирующий отбор — форма естественного отбора, при которой его действие направлено против особей, имеющих крайние отклонения от средней нормы, в пользу особей со средней выраженностью признака. Понятие стабилизирующего отбора ввел в науку и проанализировал И. И. Шмальгаузен.

Описано множество примеров действия стабилизующего отбора в природе. Например, на первый взгляд кажется, что наибольший вклад в генофонд следующего поколения должны вносить особи с максимальной плодовитостью. Однако наблюдения над природными популяциями птиц и млекопитающих показывают, что это не так. Чем больше птенцов или детёнышей в гнезде, тем труднее их выкормить, тем каждый из них меньше и слабее. В результате наиболее приспособленными оказываются особи со средней плодовитостью.

Отбор в пользу средних значений был обнаружен по множеству признаков. У млекопитающих новорождённые с очень низким и очень высоким весом чаще погибают при рождении или в первые недели жизни, чем новорождённые со средним весом. Учёт размера крыльев у воробьёв, погибших после бури в 50-х годах под Ленинградом, показал, что большинство из них имели слишком маленькие или слишком большие крылья. И в этом случае наиболее приспособленными оказались средние особи.

Наиболее широко известным примером такого полиморфизма является серповидно-клеточная анемия. Это тяжелое заболевание крови возникает у людей гомозиготных по мутантному аллелю гемоглобина (HbS) и приводит к их гибели в раннем возрасте. В большинстве человеческих популяций частота этого аллеля очень низка и приблизительно равна частоте его возникновения за счет мутаций. Однако он довольно часто встречается в тех районах мира, где распространена малярия. Оказалось, что гетерозиготы по HbS имеют более высокую устойчивость к малярии, чем гомозиготы по нормальному аллелю. Благодаря этому в популяциях, населяющих малярийные районы, создается и стабильно поддерживается гетерозиготность по этому летальному в гомозиготе аллелю.

Стабилизирующий отбор является механизмом накопления изменчивости в природных популяциях. Первым на эту особенность стабилизирующего отбора обратил внимание выдающийся ученый И.И.Шмальгаузен. Он показал, что даже в стабильных условиях существования не прекращается ни естественный отбор, ни эволюция. Даже оставаясь фенотипически неизменной, популяция не перестает эволюционировать. Её генетический состав постоянно меняется. Стабилизирующий отбор создает такие генетические системы, которые обеспечивают формирование сходных оптимальных фенотипов на базе самых разнообразных генотипов. Такие генетические механизмы как доминирование, эпистаз, комплементарное действие генов, неполная пенетрантность и другие средства скрывания генетической изменчивости обязаны своим существованием стабилизирующему отбору.
1   2   3   4   5   6


написать администратору сайта