Главная страница
Навигация по странице:

  • Существуют следующие общие принципы сборки вирусов

  • Сборка просто устроенных вирусов

  • Сложноустроенные вирусы

  • 2. Абортивный тип взаимодействия вирусов с клеткой

  • Различают дефектные вирусы и дефект­ ные вирионы. 1. Дефектные вирусы

  • 3. Интегративный тип взаимодействия вирусов с клеткой (вирогения)

  • Вирусы культивируют на трех биологических моделях

  • Выращенные вирусы определяют с помощью методов: индикации идентификации. Индикация

  • О репродукции вирусов в куриных эмбрионах

  • Культуру клеток (тканей)

  • При выращивании культур клеток необхо­димо выполнение ряда условий

  • В зависимости от техники приготовления различают

  • По числу жизнеспособных генераций

  • Перевиваемые

  • Полуперевиваемые культуры клеток

  • О репродукции вирусов в культуре клеток

  • 2. «Бляшки»

  • вирусы. К царству Vira


    Скачать 291.5 Kb.
    НазваниеК царству Vira
    Анкорвирусы.doc
    Дата19.01.2018
    Размер291.5 Kb.
    Формат файлаdoc
    Имя файлавирусы.doc
    ТипДокументы
    #14554
    страница2 из 4
    1   2   3   4

    6. Ретровирусы(плюс-нитевые диплоидные РНК-содержащие вирусы). Обратная транс-криптаза ретровирусов синтезирует (на матри­це РНК-вируса) минус-нить ДНК, с которой копируется плюс-нить ДНК с образованием двойной нити ДНК, замкнутой в кольцо (рис. 3.10). Далее двойная нить ДНК интегриру­ет с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.
    Формирование вирусов. Вирионы формиру­ются путем самосборки: составные части вириона транспортируются в места сборки ви­руса — участки ядра или цитоплазмы клетки. Соединение компонентов вириона обуслов­лено наличием гидрофобных, ионных, водо­родных связей и стерического соответствия.

    Существуют следующие общие принципы сборки вирусов:

    Формирование вирусов — многоступенча­тый процесс с образованием промежуточных форм, отличающихся от зрелых вирионов по
    составу полипептидов.

    • Сборка просто устроенных вирусов за­ключается во взаимодействии вирусных нук­леиновых кислот с капсидными белками и в образовании нуклеокапсидов.

    • У сложноустроенных вирусов сначала фор­мируются нуклеокапсиды, которые взаимо­действуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса).

    Причем сборка вирусов, реплициру­ющихся в ядре клетки, происходит с участием мембраны ядра, а сборка вирусов, репликация которых идет в цитоплазме, осуществляется с
    участием мембран эндоплазматической сети или плазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вируса.

    • У ряда сложноустроенных вирусов минус-нитевых РНК-вирусов (ортомиксовирусов, парамиксовирусов) в сборку вовлекается так назы­ваемый матриксный белок (М-белок), который расположен под модифицированной клеточной ембраной. Обладая гидрофобными свойствами, он выполняет роль посредника между нуклеокапсидом и вирусной липопротеиновой оболочкой.

    Сложноустроенные вирусы в процессе формирования включают в свой состав неко­торые компоненты клетки хозяина, например липиды и углеводы.

    Выход вирусов из клетки. Полный цикл реп­родукции вирусов завершается через 5—6 ч (вирус гриппа и др.) или через несколько су­ток (гепатовирусы, вирус кори и др.). Процесс репродукции вирусов заканчивается выходом их из клетки, который происходит взрывным путем или почкованием, экзоцитозом.

    • Взрывной путь: из погибающей клетки одновременно выходит большое количество вирионов. По взрывному пути выходят из клетки просто устроенные вирусы, не имею­щие липопротеиновой оболочки.

    • Почкование, экзоцшпт присущи вирусам, имеющим липопротеиновую оболочку, которая является производной от клеточных мембран. Сначала образовавшийся нуклеокапсид или сердцевина вириона транспортируется к кле­точным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида или сердцевины ви­риона с клеточной мембраной начинается вы­пячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. При этом клетка способна длительно сохранять жизнеспособность и про­дуцировать вирусное потомство.

    Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану (например, парамиксовирусы, тогавирусы), либо через мембраны эндоплазматической сети с последующим их выходом на поверх­ность клетки (например, буньявирусы).

    Вирусы, формирующиеся в ядре клетки (например, герпесвирусы), почкуются в перинуклеарное пространство через модифициро­ванную ядерную мембрану, приобретая таким образом липопротеиновую оболочку. Затем они транспортируются в составе цитоплазма-тических везикул на поверхность клетки.

    2. Абортивный тип взаимодействия вирусов с клеткой

    Этот тип взаимодействия не завершается образованием вирусного потомства и может возникать при следующих обстоятельствах:

    1) заражение чувствительных клеток дефект­ными вирусами или дефектными вирионами;

    1. заражение стандартным вирусом генети­чески резистентных к нему клеток;

    2. заражение стандартным вирусом чувс­твительных клеток в непермиссивных (нераз­решающих) условиях.

    . Различают дефектные вирусы и дефект­ные вирионы.

    1. Дефектные вирусы существуют как само­стоятельные виды, которые репродуциру­ются лишь при наличии вируса-помощника (например, вирус гепатита D репродуциру­ется только в присутствии вируса гепатита В).

    2. Дефектные вирионы обычно лишены части генетического материала и могут на­капливаться в популяции многих вирусов при множественном заражении клеток.

    Абортивный тип взаимодействия чаще на­блюдается при заражении нечувствительных клеток стандартным вирусом. Механизм гене­тически обусловленной резистентности кле­ток к вирусам широко варьирует. Он может быть связан: с отсутствием на плазматической мембране специфических рецепторов для ви­русов; с неспособностью данного вида клеток инициировать трансляцию вирусной иРНК; с отсутствием специфических протеаз или нуклеаз, необходимых для синтеза вирусных макромолекул, и т. д.

    Абортивный тип взаимодействия может также возникать при изменении условий, в которых происходит репродукция вирусов: повышение температуры организма, измене­ние рН в очаге воспаления, введение в орга­низм противовирусных препаратов и др. При устранении неразрешающих условий абор­тивный тип переходит в продуктивный тип взаимодействия вирусов с клеткой.

    3. Интегративный тип взаимодействия вирусов с клеткой (вирогения)

    Это взаимное сосуществование вируса и клетки в результате интеграции (встраива­ния) нуклеиновой кислоты вируса в хро­мосому клетки хозяина. При этом интег­рированный геном вируса реплицируется и функционирует как составная часть генома клетки.

    Интегративный тип взаимодействия ха­рактерен:

    1. для умеренных ДНК-содержащих бактериофагов,

    2. онкогенных вирусов

    3. и не­которых инфекционных вирусов как ДНК-содержащих (например, вируса гепатита В), так и РНК-содержащих (например, вируса иммунодефицита человека).

    4. Для интегра­ции с геномом клетки необходимо наличие кольцевой формы двунитевой ДНК-вируса. Геном ДНК-содержащих вирусов в кольце­вой форме прикрепляется к клеточной ДНК в месте гомологии нуклеотидных последо­вательностей и встраивается в определен­ный участок хромосомы при участии ряда ферментов (рестриктаз, эндонуклеаз, лигаз).

    5. У РНК-содержащих вирусов процесс ин­теграции более сложный. Он начинается с механизма обратной транскрипции, кото­рый заключается в синтезе комплементар­ной нити ДНК на матрице вирусной РНК с помощью вирусоспецифического фермента обратной транскриптазы (ревертазы). После образования двунитевой ДНК и замыкания ее в кольцо происходит интеграция ДНК-транскрипта в хромосому клетки.

    Встроенная в хромосому клетки ДНК ви­руса называется провирусом, или провирус -ной ДНК. Провирус реплицируется в составе хромосомы и переходит в геном дочерних клеток, т. е. состояние вирогении наследует­ся. Однако под влиянием некоторых физи­ческих или химических факторов провирус может исключаться из хромосомы клетки и переходить в автономное состояние с разви­тием продуктивного типа взаимодействия с клеткой.

    Дополнительная генетическая информация провируса при вирогении сообщает клетке новые свойства, что может быть причиной онкогенной трансформации клеток и разви­тия опухолей, а также развития аутоиммун­ных и хронических заболеваний. Сохранение вирусной информации в виде провируса в составе клеточного генома и передача ее по­томству лежит в основе персистенции (лат. persistenceупорство, постоянство) вирусов в организме и развития латентных (скрытых) вирусных инфекций.




    Культивирование вирусов

    Культивирование вирусов человека и живот­ных проводят с целью лабораторной диагнос­тики вирусных инфекций, для изучения пато­генеза и иммунитета при вирусных инфекци­ях, а также для получения диагностических и вакцинных препаратов.

    Вирусы культивируют на трех биологических моделях:

    1. в организ­ме лабораторных животных,

    2. в развивающихся эмбрионах птиц (чаще на куриных эмбрионах)

    3. и культурах клеток (тканей).

    Выращенные вирусы определяют с помощью методов:

    1. индикации

    2. идентификации.

    Индикациявирусов, т.е. обнаружение факта их репродук­ции, основана на выявлении различных био­логических свойств вирусов и особенностей их взаимодействия с чувствительными клетками. Идентификация(определение вида, типа) вирусов осуществляется, в основном, с помощью иммуно­логических реакций, основанных на взаимодейс­твии антигенов вирусов и соответствующих им антител (см. «Реакции иммунитета»).

    1. Лабораторных животных (взрослых или новорожденных белых мышей, хомяков, кроликов, обезьян и др.) заражают исследуемым вируссодержащим материалом раз­личными способами (подкожно, внутримы­шечно, интраназально, интрацеребрально и т. д.) в зависимости от тропизма вирусов. Использование животных для культивирова­ния вирусов в диагностических целях весьма ограничено из-за видовой невосприимчи­вости животных ко многим вирусам челове­ка, контаминации животных посторонними микробами, а также по экономическим и этическим соображениям.

    О репродукции вирусов в организме жи­вотных судят по развитию у них видимых клинических проявлений заболевания, патоморфологическим изменениям органов и тканей, а также на основании реакции гемаг-глютинации (РГА) с суспензией из органов, содержащих вирусы. РГА основана на способ­ности многих вирусов вызывать склеивание (агглютинацию) эритроцитов человека, птиц и млекопитающих в результате взаимодейс­твия вирусных белков (гемагглютининов) с рецепторами эритроцитов.

    1. Куриные эмбрионы (5-12-дневные) зара­жают путем введения исследуемого материала в различные полости и ткани зародыша. Таким образом можно культивировать виру­сы гриппа, герпеса, натуральной оспы и др.

    Достоинствами модели являются:

        1. возмож­ность накопления вирусов в больших коли­чествах;

        2. отсутствие скрытых вирусных ин­фекций;

        3. доступность для любой лаборатории.

    О репродукции вирусов в куриных эмбрионах свидетельствуют:

    1. специфические поражения оболочек и тела эмбриона (оспины, крово­излияния);

    2. гибель эмбриона;

    3. положительная РГА с вируссодержащей жидкостью, получен­ной из полостей зараженного зародыша.

    Методику культивирования вирусов в раз­вивающихся эмбрионах птиц используют при промышленном выращивании вирусов. Однако многие вирусы не размножаются в эм­брионах птиц; почти неограниченные возмож­ности для культивирования вирусов появились после открытия метода культур клеток.

    1. Культуру клеток (тканей) наиболее часто применяют для культивирования вирусов. Метод культур клеток разработан в 50-х годах XX века Дж. Эндерсом и соавт., получивши­ми за это открытие Нобелевскую премию. Клетки, полученные из различных органов и тканей человека, животных, птиц и дру­гих биологических объектов, размножают вне организма на искусственных питательных средах в специальной лабораторной посуде. Большое распространение получили культу­ры клеток из эмбриональных и опухолевых (злокачественно перерожденных) тканей, обладающих, по сравнению с нормальными клетками взрослого организма, более актив­ной способностью к росту и размножению.

    При выращивании культур клеток необхо­димо выполнение ряда условий:

    1) соблюдение правил асептики;

    2) исполь­зование лабораторной посуды из нейтрально­го стекла (пробирки, флаконы, матрасы) или специальных реакторов для получения био­технологической продукции;

    3) использование сложных по составу питательных сред (среда 199, Игла), содержащих минеральные соли, аминокислоты, витамины, глюкозу, сыворотку крови животных или человека, буферные рас­творы для поддержания стабильного рН;

    4) до­бавление антибиотиков к питательной среде для подавления роста посторонних микробов:

    5) соблюдение оптимальной температуры (36— 38,5 °С) роста клеток.

    В зависимости от техники приготовления различают

    1. однослойные,

    2. суспензионные

    3. органные культуры клеток:

    1. Однослойные культуры клетокклетки спо­собны прикрепляться и размножаться на повер­хности химически нейтрального стекла лабора­торной посуды в виде монослоя. Они получили наибольшее применение в вирусологии.

    2. Суспензионные культуры клеток— клетки размножаются во всем объеме питательной среды при постоянном ее перемешивании с помощью магнитной мешалки или во враща­ющемся барабане. Их используют для получе­ния большого количества клеток, например, при промышленном получении вирусных вакцин.

    3.Органные культуры— цельные кусочки органов и тканей, сохраняющие исходную структуру вне организма.

    Культуры клеток в процессе их культиви­рования способны проходить десятки гене­раций.

    По числу жизнеспособных генераций культуры клеток подразделяют на: 1) пер­вичные, или первично-трипсинизированные;

    2) перевиваемые, или стабильные;

    3) полупе­ревиваемые.

    Первичные культурыспособны размножать­ся только в первых генерациях, т. е. выдержи­вают не более 5—10 пассажей после выделения из тканей. В основе получения первичных культур лежит обработка кусочков тканей (эм­бриональных, опухолевых или нормальных) протеолитическими ферментами, например трипсином, который разрушает межклеточ­ные связи в тканях и органах с образованием изолированных клеток.

    Перевиваемые, или стабильные, культуры клеток способны размножаться в лаборатор­ных условиях неопределенно длительный срок (десятки лет), т. е. выдерживают мно­гочисленные пассажи. Их получают преиму­щественно из опухолевых или эмбриональ­ных тканей, обладающих большой потенцией роста. Перевиваемые культуры клеток имеют преимущества перед первичными культура­ми. К ним относятся: продолжительность их культивирования, высокая скорость размножения опухолевых и эмбриональных клеток, меньшая трудоемкость, способность культур сохранять свои свойства в замороженном со­стоянии в течение многих лет, возможность использования международных линий культур во многих лабораториях мира. Однако злока­чественный характер клеток и соматические мутации, претерпеваемые нормальными клет­ками в гпоцессе многочисленных генераций, ограничивают использование этого вида куль­тур, в частности невозможно их применение в производстве вирусных вакцин.

    Полуперевиваемые культуры клетокимеют ограниченную продолжительность жизни и выдерживают 40—50 пассажей. Их обычно по­лучают из диплоидных клеток эмбриона че­ловека. В процессе пассажей эти куяьтуры сохраняют диплоидный набор хромосом, ха­рактерный для соматических клеток исходной ткани, и не претерпевают злокачественной тфодоЗдормавдод. Лзггстал} те>луперев\тааемые культуры клеток могут быть использованы как в диагностике, так и в производстве вакцин.

    Внедрение в вирусологию метода культур клеток позволило выделить и идентифициро­вать многочисленные ранее неизвестные ви­русы, так как почти к каждому вирусу можно подобрать соответствующие чувствительные клетки, в которых он способен репродуциро­ваться. Метод дал возможность изучать взаи­модействие вирусов с клеткой на молекуляр­ном уровне, получать высококачественные вакцинные и диагностические препараты, проводить вирусологические исследования в стандартных условиях.

    О репродукции вирусов в культуре клеток, зараженных вируссодержащим материалом, можно судить на основании следующих фе­номенов:

    1. цитопатогенного действия(ЦПД) вирусов, или цитопатического эффекта, об­разования внутриклеточных включений;

    2. об­разования «бляшек»;

    3. реакций гемадсорбции и гемагглютинации;

    4. «цветной» реакции.

    1. ЦПД — патологические изменения морфо­логии клеток, вплоть до их гибели, возника­ющие в результате репродукции вирусов, и наблюдаемые под микроскопом. В зависимости от особенностей репродуци­рующихся вирусов ЦПД может отличаться. В одних случаях быстро вакуолизируется цитоплазма, разрушаются митохондрии, округ­ляются и гибнут клетки, а в других — фор­мируются гигантские многоядерные клетки (так называемые симпласты) или наблюдает­ся явление клеточной пролиферации, которое в итоге заканчивается деструкцией клеток. Таким образом, характер ЦПД позволяет ис­пользовать этот феномен не только для инди­кации вирусов, но и для их ориентировочной идентификации в культуре клеток.

    Некоторые вирусы можно обнаружить и идентифицировать по внутриклеточным включениям, которые образуются в ядре или цитоп­лазме зараженных клеток. Часто включения представляют собой скопления вирусных частиц или отдельных компонентов вирусов, иногда могут содержать клеточный материал. Выявляют включения с помощью светового или люминесцентного микроско­па после окрашивания зараженных клеток соответственно анилиновыми красителями или флюорохромами. Включения могут отли­чаться по величине (от 0,2 до 25 мкм), форме (округлые или неправильные) и численности (одиночные и множественные). Характерные цитоплазматические включения формируют­ся в клетках, инфицированных вирусом нату­ральной оспы (тельца Гварниери), бешенства (тельца Бабеша—Негри), а внутриядерные включения — при заражении аденовирусами или вирусами герпеса.

    2. «Бляшки», или «негативные колонии»,пред­ставляют собой ограниченные участки разру­шенных вирусами клеток в сплошном монослое культур клеток. Они видны невооруженным гла­зом в виде светлых пятен на фоне окрашенного монослоя живых клеток (рис. 3.13). Добавление агара в питательную среду ограничивает рас­пространение вирусов по всему монослою после выхода их из разрушенной клетки и обеспечи­вает взаимодействие вирусов только с соседни­ми клетками. Каждая «бляшка» образуется по­томством одного вириона. Подсчитав количес­тво «бляшек», можно определить концентрацию вирусов в исследуемом материале. Кроме того, «бляшки» разных групп вирусов отличаются по размеру, форме, срокам появления. Поэтому ме­тод «бляшек» используют для дифференциации вирусов, а также для селекции штаммов и полу­чения чистых линий вирусов.
    1   2   3   4


    написать администратору сайта