вирусы. К царству Vira
Скачать 291.5 Kb.
|
3. В основе реакции гемадсорбции лежит способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты. Целый ряд вирусов (гриппа, парагриппа и др.) обладают гемадсорбирующими свойствами, что позволяет использовать реакцию гемадсорбции для индикации этих вирусов даже при отсутствии выраженного ЦПД в культуре клеток. Механизмы реакции гемадсорбции и гемагглютинации сходны. Поэтому для обнаружения репродукции некоторых вирусов в культуре клеток можно использовать реакцию гемагглютинации с культуральной жидкостью, т. е. с питательной средой, содержащей размножившиеся вирусы. 4. О репродукции вирусов в культуре клеток можно также судить по так называемой «цветной» реакции. Она регистрируется по изменению цвета индикатора, находящегося в питательной среде для культур клеток. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе своего метаболизма выделяют кислые продукты, изменяющие рН среды и, соответственно, цвета индикатора. При репродукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет первоначальный цвет индикатора. 8.7. Особенности формирования патогенности у вирусов. Формы взаимодействия вирусов с клеткой. Особенности вирусных инфекций В отличие от других представителей мира микробов, вирусы являются облигатными внутриклеточными паразитами на генетическом (молекулярном) уровне. Среди них нет непатогенных, поэтому применительно к ним термин «патогенность» обычно не применяют, а вирулентность обозначают как инфекционность или инфекциозность. В связи с вышеизложенным инфекционный процесс при вирусных инфекциях связан прежде всего с поражением клеток, в которых они размножаются, и всегда является взаимодействием двух геномов — вирусного и клеточного. Патогенные свойства вирусов складываются из следующих компонентов:
Все эти свойства необходимы, но в то же время сами по себе они могут быть недостаточными для патогенного действия вируса. Некоторые из этих свойств обусловлены клетками, в которых они размножаются, что получило название хозяйского ограничения клеткой. Многие вирусы проникают в организм непосредственно через слизистые оболочки, которые служат входными воротами инфекции и защищены целым рядом неспецифических факторов резистентности, поэтому вирусы должны быть устойчивы к действию данных неблагоприятных факторов, что детерминируется генами вирусов. Например, кишечные вирусы обычно устойчивы к кислым значениям рН, детергентному действию солей желчных кислот и к разрушающему их действию протеолитических ферментов. Способность вирусов адсорбироваться на мембранах чувствительных к вирусам клеток является специфическим процессом для вирусов. Этот процесс протекает при участии прикрепительных белков (антирецепторов) у вирусов и чувствительных к ним клеточных рецепторов. Простые вирусы содержат прикрепительные белки в составе капсида, а сложноустроенные вирусы — в составе супер-капсида. Такие сложные вирусы, как вирус осповакцины и вирус простого герпеса, могут иметь прикрепительные белки нескольких видов. Способность вирусов адаптироваться к новому хозяину обусловлена изменением первичной структуры в области участка прикрепительного белка, узнающего клеточный рецептор. Эти участки консервативны по своему строению и расположены в углублениях-каньонах, которые чрезвычайно малы по своим размерам, благодаря чему недоступны для активных центров антител, реагирующих лишь с окружающими эти углубления гипервариабельными участками, что позволяет вирусам избежать иммунологического пресса. Мутации в генах, кодирующих антирецепторы, иногда приводят к полной потере способности вирусов взаимодействовать с клеточными рецепторами. Сама по себе адсорбция вирусов на поверхности клетки далеко не всегда приводит к проникновению вирусов в клетки. Многие вирусы, имеющие гемагглютинин на своей поверхности, адсорбируются на эритроцитах, особенно на безъядерных эритроцитах млекопитающих, но не проникают в них, поскольку последние лишены способности к эндоцитозу. Это же в значительной степени справедливо и для сохранивших ядра птичьих эритроцитов. Но если одновременно с эндо-цитозом не произойдет слияния клеточных и вирусных мембран при заражении сложными вирусами, имеющими суперкапсид, и сходного взаимодействия вирусного капсида с клеточной мембраной при заражении простыми вирусами, то только лишь эндоцитоза будет недостаточно, так как эндоциторная вакуоль станет «кладбищем» для вирионов. Эта стадия взаимодействия чрезвычайно важна и специфична для разных вирусов. В ней принимают участие специальные белки слияния, которые есть у многих оболочечных вирусов, или их функциональные участки. Белки слияния приводят к нарушению функции клеточных мембран, изменению их проницаемости. Белки слияния не идентичны прикрепительным белкам вирусов. Наиболее хорошо изучен белок слияния у парамиксовирусов, получивший название F-белка (от англ. fusion— слияние). Область F-белков, участвующая в слиянии, обладает высоким консерватизмом. Мутации в этой области блокируют процесс слияния. Слияние может происходить извне и изнутри. При высокой множественности заражения происходит слияние извне, которое появляется почти сразу же после заражения и не требует синтеза кодируемых вирусом белков. Слияние изнутри обнаруживается при низкой множественности заражения. Оно обусловлено вновь синтезированными белками слияния и появляется на поздних стадиях инфекционного процесса. Для проявления инфекционной активности вирусов необходим посттрансляционный процессинг белков слияния, заключающийся в протеолитичес-ком нарезании белка-предшественника в результате точечного или ограниченного про-теолиза, что ведет к его активации и образованию фрагмента, взаимодействующего с клеточной мембраной. Этим белки слияния вирусов напоминают протоксины бактерий. Для нарезания вирусных белков требуются протеазы определенной специфичности. Эти протеазы могут иметь как клеточное, так и вирусное происхождение. Мутации в участке нарезания ведут к блокированию протеоли-за и продукции неинфекционных вирусов, не способных осуществлять многоцикловую инфекцию, поэтому инфекционный процесс будет носить абортивный характер. Степень протеолиза имеет большое значение для генерализации вирусной инфекции в организме. Посттрансляционная модификация вирусных белков в результате протеолитического нарезания является критическим моментом в окончательном приобретении вирусами инфекционной активности и представляет уязвимую мишень для ингибиторов протеолиза. Белки слияния вирусов выводят из строя не только зараженные, но и не зараженные вирусами клетки, входящие в состав синцития. Они обуславливают возможность перехода вирусов из клетки в клетку по образовавшимся межклеточным мостикам, благодаря чему вирусы не попадают в межклеточное пространство и становятся недоступными для вируснейтрализующих антител. В отличие от парамиксовирусов, у вирусов гриппа белком слияния является гемагглютинин, обуславливающий также адсорбцию вирусов к клетке. Однако функции прикрепления и слияния разделены между разными его участками большой (НА1) и малой (НА2) субъединицами соответственно. Важным фактором патогенности у вирусов гриппа является нейраминидаза, которая, удаляя остатки сиаловой кислоты с вирусного гемагглютинина, делает его доступным для протеолитического расщепления, необходимого для проявления инфекционности вирусов. Очевидно, что сходный по функции с белками слияния сложных вирусов белок существует в составе капсида простых вирусов, и один из поверхностно расположенных белков капсида вызывает дестабилизацию клеточной мембраны, что способствует проникновению модифицированного капсида из эндоцитарной вакуоли в цитоплазму. Взаимодействие вируса и клетки — это всегда взаимодействие вирусного и клеточного генома. В результате адсорбции вируса, его проникновения в клетку и раздевания происходит освобождение генетического материала вирусов, который становится функционально активным, так как освобождается от внешних защитных оболочек, препятствующих его экспрессии. Степень активности генома обусловлена разной степенью депротеинизации у вирусов разных семейств. Депротеинизация осуществляется либо клеточными протеазами, либо поверхностно-активными структурами клетки (хозяинное ограничение клетки). Исключение составляют вирусы оспы. При этом для сложноустроенных вирусов минимальной инфицирующей структурой оказались внутренние компоненты вирусной частицы — сердцевины и нуклеокапсиды с модифицированными белками и измененной конфор-мацией, а для простых вирусов — нуклеиновые кислоты, тесным образом соединенные с внутренними или геномными белками, функция которых связана с функциями генома и их регуляцией. Ключевым моментом в репликации вирусов является использование для синтеза вирусных белков хозяйских структур клетки, синтезирующих белки. Эукариотическая клетка навязывает вирусу два ограничения. Во-первых, так как клетка синтезирует в ядре свою собственную мРНК путем транскрипции своей ДНК и последующего посттранскрипционного процессинга транскрипта, ни в ядре, ни в цитоплазме нет ферментов, необходимых для транскрипции мРНК с вирусного РНК-генома, а в цитоплазме нет ферментов, способных транскрибировать вирусную ДНК. Поэтому клеточную транскриптазу могут использовать только ДНК-геномные вирусы, способные проникать в ядро. Все другие вирусы должны создавать собственные ферменты для синтеза мРНК. Для транскрипции ДНК-геномных вирусов в цитоплазме клетки необходим специальный фермент — вирусная РНК-по-лимераза, которая является структурным вирусным белком. У РНК-геномных вирусов транскрипция осуществляется вирусоспеци-фическими транскриптазами, которые могут быть как структурными (эндогенная транс-криптаза), так и неструктурными белками. У сложноустроенных РНК-геномных вирусов транскрипция происходит не на голой матрице РНК, а в составе вирусных нуклеокапсидов или сердцевин (транскриптивные комплексы). Связанные с геномом капсидные белки необходимы для транскрипции, так как они обеспечивают правильную конформацию тяжа РНК, защиту его от клеточных протеаз, связь отдельных фрагментов генома друг с другом, а также регуляцию транскрипции. Во-вторых, синтезирующий аппарат эукариотической клетки приспособлен для трансляции только моноцистронных мРНК, так как он не распознает внутренних участков инициации в мРНК. В результате вирусы вынуждены синтезировать либо отдельные мРНК для каждого гена, либо мРНК, включающие несколько генов и кодирующие большой полипротеин, который затем разрезается на индивидуальные белки. Транскрипция вирусного генома строго регулируется на протяжении инфекционного процесса многочисленными вирусо-специфическими и клеточными факторами. Со степенью транскрипции нередко связан характер инфекции, ее тип (от продуктивной до абортивной инфекции). Важную роль в регуляции процессов транскрипции играют гены усилители и трансактиваторы. Они расположены в специальной области генома вирусов и содержат гены, усиливающие и активирующие экспрессию структурных генов. Усилители — это генетические элементы, усиливающие транскрипцию. Структура вирусных усилителей не отличается от структуры клеточных. Факторы транскрипции, связывающиеся с промотором и усилителем, выполняют одну и ту же функцию и могут представлять собой как клеточные, так и вирусные белки. Усилители, контролирующие уровень экспрессии генов, обнаружены у паповавирусов, гепаднавиру-сов, герпесвирусов, ретровирусов и ряда других вирусов. Белки трансактиваторы не обладают специфичностью действия. Они связываются с регуляторными областями генов и одновременно активируют усиленную транскрипцию всех генов, в том числе и других вирусов, что сопровождается взрывной продукцией вирусных частиц, а также включают экспрессию бактериальных генов и клеточных онкогенов. Они действуют не только на стадии транскрипции, но и на посттранскрипционном уровне. Взаимодействие вирусных и клеточных трансактиваторов может приводить к переходу латентной инфекции в литическую, а также к онкогенной трансформации зараженных клеток. Как и усилители, трансактиваторы содержат две важные для их функции области. Одна из них определяет транспорт и связывание белка с мишенью, а другая пред- ставляет собой активный центр и выполняет основную, активирующую, функцию белка. Блокировка функции трансактиваторов на основе конкуренции с белками-мутантами или пептидами, соответствующими функциональным областям трансактиваторов является перспективным направлением в противовирусной терапии. Трансактиваторы обнаружены у вируса иммунодефицита человека, вируса гепатита В, герпесвирусов, аденовирусов, паповавирусов. Усилители и трансактиваторы являются необходимым атрибутом вирусов как генетических паразитов, конкурирующих с клеточным геномом. Неравные шансы небольших по размерам вирусов на победу уравновешиваются возникшими в ходе эволюции генетическими элементами, позволяющими гораздо меньшей по величине молекуле вирусного генома успешно завершить экспрессию своих генов и создать вирусное потомство. При этом вирусы широко используют механизмы клеточного происхождения, которые теперь обращены против клетки хозяина. Важную роль в формировании патогенное -ти сложных вирусов, помимо посттрансляционной модификации вирусных белков,.играет синтез М-белка (матриксного белка), участвующего в сборке вирусной частицы. Включение М-белка в плазматическую мембрану является лимитирующим событием, определяющим возможность почкования вирусных частиц. Синтез М-белка жестко регулируется как ви-русоспецифическими, так и клеточными механизмами. Количество М-белка в зараженных клетках во многом определяет особенности репродукции вируса в данной клеточной системе. Аберрантный синтез М-белка и его нарушенный внутриклеточный транспорт служат одной из частых причин абортивных и персис-тентных вирусных инфекций. Экспрессия гена М значительно варьирует в клетках разного происхождения. Патогенность вирусов обусловлена также их белковыми продуктами, блокирующими апоптоз клетки и изменяющими защитные реакции в макроорганизме, подавляя продукцию цитокинов, что способствует репродукции вирусов и их распространению по макроорганизму. Например, вирусы натуральной оспы образуют TNF-связывающий белок, белки, подавляющие созревание антигенов МНС 1 класса и аналог рецепторов у-интерферона. Вирус иммунодефицита человека, наоборот, усиливает продукцию цитокинов пораженными им клетками, что ведет к усилению воспалительной реакции и развитию нейротоксического действия. Как и другие микробы, вирусы, благодаря наличию внешней липидсодержащей оболочке, образованной из мембраны клетки хозяина, вариабельности структуры поверхностных антигенов, интеграции в геном клетки, гибели Т-лимфоцитов и т. д., обладают способностью уходить от воздействия иммунной системы макроорганизма. Заражение восприимчивых клеток вовсе не означает, что в клетках неизбежно будет происходить размножение вируса, так как восприимчивость не идентична пермиссивнос-ти клеточной системы. Это одна из главных концепций в вирусологии. Многие стадии взаимодействия вируса с клеткой имеют не столько вирусоспецифическую, сколько опосредованную клеткой природу (эндоцитоз, де-протеинизация, синтез вирусоспецифических белков и т.д.). Клетка принимает активное участие в формировании патогенных вирусов лишь в пермиссивной клеточной системе, содержащей весь набор необходимых факторов, используемых вирусами на разных стадиях инфекционного процесса, а репликативный цикл завершается и приводит к образованию инфекционного потомства, что не будет происходить в полупермиссивных и непермис-сивных клеточных системах (хозяинная или хозяйская рестрикция). Патогенность вирусов имеет адресный характер. Каждый вирус занимает свою экологическую нишу. Одни из них поражают широкий круг хозяев, другие — более или менее близкие между собой виды, третьи — один-единственный вид, хотя экспериментальными моделями могут быть разные виды животных. В пределах вида хозяина вирус поражает определенные клетки, которые имеют рецепторы к данному вирусу, что и определяет тканевой тропизм вирусов. При этом разные вирусы могут взаимодействовать с различными клеточными рецепторами, так как одни и теже клетки могут иметь рецепторы для разных вирусов. С другой стороны, рецепторы для одного и того же вируса могут иметь разные клетки. Чаще всего наличие на клетках рецепторов для вирусов является и показателем возможности репродукции в них вирусов. Тканевой тропизм определяется не только наличием на клетках рецепторов, но и возможностью осуществления в клетках ви-русоспецифических синтезов. В зависимости от пермиссивности клеточной системы инфекция восприимчивых клеток может быть продуктивной, ограниченной и абортивной. Продуктивная инфекция происходит в пер-миссивных клетках и характеризуется полным циклом репродукции, который заканчивается формированием инфекционного потомства. Пермиссивность клеточной системы обуславливает и многократную цикличность размножения в ней вирусов. Абортивной называется инфекция, которая не завершается образованием инфекционных вирусных частиц или при которой они образуются в гораздо меньшем количестве, чем при продуктивной инфекции. Абортивная инфекция может наступить в силу двух обстоятельств. Во-первых, несмотря на восприимчивость к заражению, клетки могут оказаться непермиссивными, так как в них могут экспрессироватся не все, а лишь некоторые гены вирусов. В основе механизмов генетически обусловленной непермиссивнос-ти клеток лежит либо отсутствие клеточных факторов, необходимых для репродукции, либо наличие факторов, нарушающих процессы репродукции вирусов. Во-вторых, абортивная инфекция может быть результатом заражения как пермиссивных, так и непермиссив-ных клеток дефектными вирусами, у которых отсутствует полный набор вирусных генов, необходимых для репродукции. Дефектные вирусы представляют собой крайнюю форму паразитизма, так как они используют генные продукты, образованные другими, часто не родственными им, не гомологичными вирусами. Примером таких вирусов являются аденоассоциированные вирусы и вирус гепатита D, помощником которого служит вирус гепатита В. Абортивную инфекцию вызывают также дефектные интерферирующие вирусные |