Главная страница
Навигация по странице:

  • 1 Описание процесса

  • Условия протекания

  • 1.3 Продукты

  • 2 Химизм и механизм реакций каталитического крекинга

  • 3 Современные и перспективные процессы каталитического крекинга

  • 4 Катализаторы процесса

  • 5 Каталитический крекинг в России и мире

  • СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  • Каталитический крекинг ОПД. Каталитический крекинг


    Скачать 58.11 Kb.
    НазваниеКаталитический крекинг
    Дата04.07.2019
    Размер58.11 Kb.
    Формат файлаdocx
    Имя файлаКаталитический крекинг ОПД.docx
    ТипРеферат
    #83634

    Министерство образования и науки Российской Федерации

    Федеральное государственное бюджетное образовательное учреждение

    высшего образования

    «Уфимский государственный нефтяной технический университет»
    Кафедра «Технологические машины и оборудование»


    Реферат

    по дисциплине «Основы профессиональной деятельности»

    на тему «Каталитический крекинг»


    Студент гр. БМЗп 18-01 Р.Р. Аманова
    Доцент А.Х. Габбасова

    Уфа 2018

    СОДЕРЖАНИЕ


    Введение

    3

    1 Описание процесса

    5

    1.1 Условия протекания

    8

    1.2 Сырье

    11

    1.3 Продукты

    13

    2 Химизм и механизм реакций каталитического крекинга

    18

    3 Современные и перспективные процессы каталитического крекинга

    20

    4 Катализаторы процесса

    22

    5 Каталитический крекинг в России и мире

    25

    Заключение

    27

    Список использованных источников

    28



    ВВЕДЕНИЕ
    Процесс каталитического крекинга является одним из наиболее распространенных крупнотоннажных процессов углубленной переработки нефти и в значительной мере определяет технико-экономические показатели современных и перспективных НПЗ топливного профиля.

    Основное целевое назначение каталитического крекинга производство с максимально высоким выходом (до 50% и более) высоко-октанового бензина и ценных сжиженных газов - сырья для последующих производств высокооктановых компонентов бензинов изомерного строения: алкилата и метил-трет-бутилового эфира, а также сырья для нефтехимических производств. Получающийся в процессе легкий газойль используется обычно как компонент дизельного топлива, а тяжелый газойль с высоким содержанием полициклических ароматических углеводородов как сыре для производства технического углерода или высококачественного электродного кокса (например, игольчатого).

    Процессы каталитического крекинга получили наибольшее развитие в США, где удельный вес их в 1990 Г. составил 34,2% от первичной переработки нефти, причем на некоторых НПЗ этот показатель составляет более 50%. Доля этого процесса на НП3 других развитых капиталистических стран составляет 10... 15% мас.

    Еще в 1919 - 1920 гг. академиком Н. Д. Зелинским была предложена идея осуществления низкотемпературного каталитического крекинга (≈ 200 ℃) нефтяного сырья на хлориде алюминия. На основе его работ была создана и испытана установка по получению бензина. Но из-за существенных недостатков хлорида алюминия как катализатора (сильная коррозия аппаратуры, большой расход катализатора вследствие образования комплексных соединений с углеводородами, периодичность процесса и др.) эта идея не нашла промышленного внедрения.

    Первая промышленная установка по каталитическому крекингу керосино-газойлевых фракций, которая была пущена в США в 1936 г., представляла собой периодически регенерируемый процесс со стационарным слоем катализатора из природной глины. В 1940 г. природная глина была заменена на более активный синтетический гранулированный алюмосиликатный катализатор (установки Гудри).

    В 1942 г. промышленный процесс каталитического крекинга переводят на непрерывную схему с применением шарикового катализатора, циркулирующего между реактором и регенератором (зарубежные установки термофор, гудрифлоу, гудрезид, отечественные с 1946 г. типа 43-1, 43-102). В последующие годы возникли и нашли широкое промышленное внедрение более совершенные установки каталитического крекинга с кипящим (псевдоожиженным) слоем микросферического катализатора (зарубежные установки флюид, модели I, II, III и IV, Ортофлоу, модели А, В и С; отечественные установки типа 1-Б, 1-А, 43-103,43-104 и ГК-3). Решающее значение для дальнейшего усовершенствования и интенсификации установок каталитического крекинга сыграли разработка в 1962 г. и промышленное внедрение цеолитсодержащих алюмосиликатных катализаторов, более высокие активность, селективность и термостабильность которых позволили существенно увеличить выход бензина, а также разработать и внедрить (1971 г.) высокоинтенсивные технологии каталитического крекинга с прямоточным реактором с восходящим потоком микросферического катализатора в так называемом лифт-реакторе (отечественные установки Г-43-107 и КТ-1, зарубежные типа ЮОП, Р-2-Р, Эйч-Оу-Си и др.).

    1 Описание процесса
    Варианты получения сырья для каталитического крекинга:

    • вариант 1 - это типовая схема получения прямогонного вакуумного газойля (ВГ) с последующей его гидроочисткой и крекингом. В США по такой схеме работает около 80 установок крекинга.

    • вариант 2 отличается тем, что гудрон после ГВП коксуют и фракцию коксования 350-500 °С смешивают с прямогонным вакуумным газойлем до гидроочистки.

    • вариант 3 - аналог предыдущего, но вместо коксования гудрон подвергают деасфальтизации и полученный деасфальтизат (КК - 350 °С), минуя гидроочистку, подают на крекинг вместе с вакуумным газойлем.

    • вариант 4 - это аналог варианта 1 по основному потоку, но часть мазута (10-20 % от ВГ), минуя ГВП и ГО, подается на крекинг, поэтому этот вариант применим для несернистых и малосернистых мазутов.

    • вариант 5 - крекинг только мазута, прошедшего очистку от серы - гидродесульфаризацию.

    Возле каждого варианта указан выход бензина (в %) с 1 т нефти при работе по данной схеме. Видно, что минимальный выход - при ведении процесса по первой схеме, а максимальный - по последней, т.е. выгоднее перерабатывать остаточное или смешанное сырье, я это связано с большими трудностями в самом процессе крекинга (увеличение коксования катализатора, отравление его металлами и азотом, рост расхода и т.д.).

    Сейчас многие установки, работающие по варианту 1, перешли на крекинг ВГ с концом кипения 550-560 °С, что несомненно увеличивает выход бензина. Много установок переведено на вариант 4 с вовлечением на крекинг до 30 % мазута или деасфальтизата (вариант 3).

    Вариант 4 считается новым, быстро развивающимся направлением в технологии крекинга. Только в США таких установок работает около 50 и в Западной Европе - 30. Мазут (иногда гудрон) добавляют к вакуумному газойлю в количестве от 10 до 30 %, если мазут малосернистый; если же он сернистый, то до смешения с вакуумным газойлем его подвергают гидродесульфуризации.

    За рубежом широко применяются процессы облагораживания остаточного сырья (мазута или гудрона), добавляемого в сырье крекинга, - процессы деас-фальтизации растворителями, гидрооблагораживания и процесс адсорбционная термодеасфальтизация (АRТ).

    Из общего количества установок крекинга в США (140) 52 установки работали с добавлением мазута в сырье, 10 установок - с добавлением рафината деасфальтизации (количество рафината деасфальтизации в сырье - 6-25 %). Эти данные относятся к середине 80-х годов, но они показывают, что деасфальтиза-ционное облагораживание тяжелых остатков уже тогда широко использовалось в технологии крекинга.

    Гидрооблагораживание используется двухступенчатое: 1-я ступень - гидродеметаллизация и 2-я ступень - гидросульфаризация.

    Из 140 установок каталитического крекинга всего 8 установок работают с подачей гидроочищенного мазута вместе с вакуумным газойлем.

    Установки гидрооблагораживания мазута работают под высоким давлением (14-20 МПа) при низких объемных скоростях (0,2-0,7 ч-1 ) и с расходом водорода 100-300 нм3/т мазута. Выход гидрогенизата (фракция выше 340 °С) составляет на этих установках от 75 до 87 %.

    Процесс АRТ был разработан в 1978-1983 гг. специально для облагораживания сырья крекинга путем термодеасфальтизации тяжелого сырья (от мазута до битуминозного органического вещества с коксуемостью до 12 %). В качестве катализатора в этом процессе используется микросферический инертный сорбент на базе каолина, азванный АРТСАТ.

    Схема установки подобна крекингу с лифт-реактором системы “UOP”. В лифт-реакторе сырье при контакте с горячим сорбентом испаряется, подвергаясь минимальной деструкции, и это позволяет максимально сохранить водород в жидких продуктах реакции. Деструкции подвергаются, главным образом, адсорбируемые на инертном катализаторе асфальто-смолистые вещества. Процесс позволяет удалить из сырья 90-95 % металлов и 60-75 % серы и азота.

    Режим процесса: температура - 450-550 °С, давление 0,1-0,2 МПа.

    Таким образом, процесс позволяет получить продукты, среди которых фракция выше 343 °С составляет больше половины, причем в этой фракции мало металлов и она имеет низкую коксуемость, т.е. по качеству близка к вакуумному газойлю. Бензин и легкий газойль по своему качеству подобны таким же продуктам термокрекинга.

    Однако, из-за своей громоздкости процесс АRТ не получил широкого распространения (2-3 установки).

    Первые установки США типа «Парафлоу» были нескольких моделей; одна из них - модель III (1 на рис. 2) (наши отечественные аналоги - установки 1А-1М и 1Б). Затем появились установки типа «Ортофлоу», модель УБ (2), отечественным аналогом которой является установка ГК-3. С появлением высокоактивных цеолитсодержащих катализаторов потребовались и новые системы крекинга с лифт-реакторами. Вначале это были лифт-реакторы, заканчивающиеся в верхней части форсированным кипящим слоем (3), а затем - только один лифт-реактор (4). Такие установки разработаны фирмой «UOP» и отечественный их аналог - установки Г-43-107.

    После этого различными фирмами было предложено много вариантов реакторно-регенераторных блоков, два из которых приведены на рис. 4 (5 и б). Последняя из этих схем отличается тем, что имеет два регенератора, рассчитанных на большую коксовую нагрузку, т.е. на переработку тяжелого сырья (мазута).

    Рассмотрим современную установку каталитического крекинга типа «UOP» (или, в нашем наименовании, 43-107), показанную на рис.5. «Сердцем» установки является реакторно-регенераторный блок, в котором происходит превращение (крекинг) сырья. Он состоит из сквознопоточного реактора Р-1 с расширенной сепарационной зоной , где происходит разделение продуктов реакции и микросферического катализатора. Продукты реакции через циклоны Ц-1 далее идут на разделение в РК, а катализатор проходит отпарную зону (ОЗ) и по транспортной трубе ссыпается в регенератор РГ-1, в общий кипящий 


      1. Условия протекания


    Основными факторами процесса являются:

    • физико-химические свойства сырья,

    • температура в реакторе

    • кратность циркуляции катализатора

    • давление в рабочей зоне реактора

    • время контакта сырья с катализатором

    • расход водяного пара в реактор

    • рециркуляция газойля.

    Конверсия выше 80% мас. считается высокой, в пределах 67-77 - средней и менее 67 - низкой. Максимальный выход бензина обычно достигается при конверсии 75-79% мас.

    С конверсией связано такое понятие, как жесткость технологического режима процесса. Жесткий режим - это повышенные температура в реакторе, кратность циркуляции катализатора, обеспечивающие высокое значение конверсии и, как следствие, увеличение выхода кокса и максимальное октановое число бензина.

    В процессе каталитического крекинга основные химические реакции протекают с поглощением теплоты и по этой причине температура продуктов крекинга снижается по мере их продвижения от зоны контакта сырья с катализатором до выхода из реактора. Перепад температуры по высоте реактора может достигать 30-40°С. Ее значения контролируются в нескольких точках, расположенных по высоте и сечению реактора. В рабочем режиме установки она изменяется в пределах 490-530°С. За температуру в реакторе обычно принимают температуру продуктов реакции на выходе из него при входе в циклоны. Она зависит от расходов вводимых в реактор сырья и катализатора, их температуры, активности катализатора, глубины превращения, количества подаваемого водяного пара, степени распыления сырья и его физико-химических свойств. Температура в реакторе, наряду с кратностью циркуляции и температурой регенерированного катализатора, относится к основным параметрам, которые можно изменять в процессе работы установки. При эксплуатации установки активность и селективность катализатора снижаются. Поэтому, а также из-за его потерь через циклоны реактора и регенератора, в систему циркуляции вводят свежий или равновесный катализатор. Для сохранения выхода бензина и его октанового числа требуется постоянная, желательно равномерная, подпитка катализатора и повышение температуры в реакторе. Эти операции приводят к возрастанию скорости первичных (расщепление тяжелых углеводородов сырья при их контакте с катализатором) и вторичных (превращение углеводородов, образовавшихся в результате первичных реакций) химических реакций, что способствует росту конверсии сырья, изменению выхода и состава получаемых продуктов. В среднем, повышение температуры в реакторе на 10°С приводит к увеличению конверсии на 12-13%. С ее ростом до 530°С увеличивается выход бензина (н. к. - 195°С) и его октановое число по исследовательскому методу.

    При температуре выше 530°С количество образующегося бензина уменьшается, так как начинают разлагаться углеводороды, входящие в его состав. Это явление называют перекрекингом. Он приводит к образованию избыточных количеств газа и кокса. При других составе сырья и катализаторе численные значения выхода и октанового числа бензина будут другими, но влияние температуры (ход кривых) останется аналогичным.

    Максимальный выход бензина достигается при температурах 520-530°С и, при прочих равных условиях, определяется физико-химическими свойствами сырья и активностью катализатора. С увеличением температуры в реакторе октановое число бензина возрастает за счет повышения в нем содержания олефиновых и ароматических углеводородов. Однако при значениях выше 530°С рост октанового числа бензина прекращается, вследствие устанавливающегося равновесия между изомерами углеводородов, входящих в его состав.

    Кроме того, с повышением температуры в реакторе растет выход сухого газа, пропан-пропиленовой, бутан-бутиленовой фракций и кокса. При этом содержание пропилена и бутилена в соответствующих фракциях также увеличивается. Рост выхода газообразных продуктов и повышение в них содержания непредельных углеводородов является результатом протекания вторичных реакций, т.к. первичные реакции крекинга приводят к образованию нафтеновых и парафиновых углеводородов изостроения, имеющих третичный атом углерода.

    Повышенный выход газообразных углеводородов (С1-С4) вызывает рост давления в реакторе, ухудшает условия работы холодильников конденсаторов главной фракционирующей колонны, компрессора и абсорберов очистки сухого газа.

    С увеличением температуры в реакторе ускоряется отщепление боковых цепей у би- и полициклических ароматических углеводородов (реакции деалкилирования). Это способствует образованию ароматических углеводородов с короткими боковыми цепями, обладающими по сравнению с алканами, более высокой плотностью и пониженным цетановым числом. Они концентрируются в легком и тяжелом газойле (кубовом продукте ректификационной колонны). При работе установки температура в реакторе задается такой, при которой обеспечивается заданный выход бензина и его октановое число, а ее постоянство регулируется автоматически расходом регенерированного катализатора, поступающего в реактор с температурой 650-750°С.

    Таким образом, температура в реакторе является главнейшим параметром процесса, который, при данном сырье, катализаторе и производительности определяет оптимальный выход бензина с заданным октановым числом.

    Давление р=0,1-0,3 МПа создается исключительно для создания направленного движения потоков сырья и катализатора.

    Для самого процесса каталитического крекинга повышение давления нежелательно, так как это усиливает реакции конденсации и адсорбцию тяжелых компонентов на катализаторе.

    Время контакта сырья изменяет соотношение продуктов крекинга. Кратность циркуляции катализатора оказывает на конверсию сырья и выход продуктов влияние, аналогичное времени контакта. Под кратностью циркуляции понимают количество катализатора, воспринимающего единицу количества сырья. Увеличение кратности циркуляции приводит к возрастанию коксообразования.


      1. Сырье


    В качестве сырья в процессе каталитического крекинга в течение многих десятилетий традиционно использовали вакуумный дистиллят (газойль) широкого фракционного состава (350…500 °С). В ряде случаев в сырье крекинга вовлекаются газойлевые фракции термодеструктивных процессов, гидрокрекинга, рафинаты процессов деасфальтизации мазутов и гудронов, полупродукты масляного производства и др. В последние годы в мировой нефтепереработке наблюдается тенденция к непрерывному утяжелению сырья. На современных зарубежных установках перешли к переработке глубоковакуумных газойлей с температурой конца кипения 540…620 °С. На специально запроектированных установках каталитическому крекингу подвергают остаточное сырье: мазуты и даже гудроны или их смеси с дистиллятным сырьембез или после предварительного облагораживания гидроочисткой, деасфальтизацией или деметаллизацией.

    Всю совокупность показателей, характеризующих качество сырья, по степени влияния на процесс каталитического крекинга условно можно подразделить на следующие три группы:

    • показатели, влияющие на выход (т. е. на материальный баланс) и качество продуктов крекинга: фракционный и групповой химический состав и содержание гетероорганических соединений;

    • показатели, влияющие на обратимую дезактивацию катализатора, такие как плотность, коксуемость и содержание сернокислотных смол;

    • показатели, влияющие на необратимую дезактивацию катализатора: содержание металлов, прежде всего ванадия и никеля.

    По фракционному составу к сырью процесса предъявляются следующие требования:

    • практически полное отсутствие бензино-лигроиновых фракций, поскольку в условиях крекинга они претерпевают незначительные превращения, к тому же нерационально загружают реакционный аппарат и отрицательно влияют на октановое число бензина;

    • ограниченное (до 10 %) содержание фракций, выкипающих до 350 °С;

    • ограниченная температура конца кипения (500…620 °С), что обусловливается концентрированием в высококипящих фракциях коксогенных компонентов сырья (смол и асфальтенов) и гетероорганических соединений и металлов.

    Групповой химический состав сырья более значительно влияет на выход и качество продуктов крекинга. В большинстве вакуумных газойлей, направляемых на каталитический крекинг, в зависимости от типа исходной нефти содержание в них групповых компонентов колеблется в довольно широких пределах: парафиновых 15…35, нафтеновых 20…40 и ароматических 15…60 %.

    Наилучшим для каталитического крекинга по выходу целевых продуктов (бензина и сжиженных газов) является сырье с преобладанием парафиновых и нафтеновых углеводородов. Полициклические ароматические углеводороды и смолы сырья в условиях крекинга дают мало бензина и много тяжелых фракций и кокса. Сернистые и кислородные соединения однотипного по химическому составу сырья не оказывают существенного влияния на материальный баланс каталитического крекинга, но ухудшают качество продуктов. Однако следует указать, что с увеличением содержания гетероорганических соединений в сырье, как правило, одновременно повышается содержание в нем полициклических углеводородов и смол.
    1.3 Продукты
    На установках каталитического крекинга получают жирный газ, нестабильный бензин, легкий и тяжелый каталитические газойли. Иногда предусмотрен отбор легроина.

    Жирный газ, получаемый на установках каталитического крекинга характеризуется значительным содержанием углеводородов изостроения, особенно изобутана. Это повышает ценность газа как сырья для дальней шей переработки.

    Жирный газ установки каталитического крекинга и бензин для удаления из него растворенных легких газов поступают на абсорбционно-газофракционирующую установку1. Работа этой установки тесно связана с работой установки каталитического крекинга. Связь заключается не только в том, что на абсорбционно-газофракционирующую установку поступают легкие продукты с установки каталитического крекинга, но и в технологической взаимозависимости обеих установок. Так, с увеличением количества газа, образующегося при крекинге, необходимо вводить в работу дополнительный компрессор на абсорбционно-газофракционирующей установке во избежание повышения давления на установке каталитического крекинга. С увеличением температуры конца кипения нестабильного бензина приходится изменять режим бутановой колонны, чтобы не снизить глубину отбора бутан-бутиленовой фракции.

    Сухой газ, получаемый после выделения бутан-бутиленовой и пропан-пропиленовой фикций, большей частью используется как энергетическое топливо.

    Нестабильный бензин. При каталитическом крекинге можно вырабатывать высокооктановый автомобильный бензин или сырье для получения базового авиационного бензина путем каталитической очистки.

    При производстве базового авиационного бензина исходным сырьем являются керосиновые и легкие соляровые дистилляты первичной перегонки нефти или их смеси, выкипающие в пределах 240 -- 360 °С. Сначала получают бензин с концом кипения 220-245 °С (так называемый мотобензин). После стабилизации этот бензин поступает на дальнейшую переработку -- каталитическую очистку (вторая ступень каталитического крекинга), на которой получают базовый авиационный бензин. Последний, в результате каталитической очистки, содержит, по сравнению с автомобильным бензином, значительно меньше олефинов и больше ароматических углеводородов, что соответственно повышает стабильность и октановое число авиационного бензина.

    Базовые авиационные бензины в зависимости от свойств перерабатываемого сырья и условий процесса имеют октановые числа по моторному методу от 82 до 85, а с добавкой этиловой жидкости(3 -- 4мл на 1 кг бензина) -- от 92 до 96.

    При производстве автомобильного бензина в качестве исходного сырья, как правило, используются дистилляты, полученные при вакуумной перегонке нефти и выкипающие при 300 -- 550°С или в несколько более узких пределах. Получаемые на установках каталитического крекинга автомобильные бензины имеют октановые числа по моторному методу 78 -- 82 (без добавки этиловой жидкости), а по исследовательскому методу 88 -- 94 без этиловой жидкости и 95 -- 99 с добавлением 0,8мл ТЭС на 1л.

    Нестабильный бензин каталитического крекинга подвергают физической стабилизации с целью удаления растворенных в нем легких углеводородов, имеющих высокое давление насыщенных паров.

    Из стабильных бензинов каталитического крекинга приготовляют авиационные бензины или используют их как высокооктановые компонента для приготовления автомобильных бензинов разных марок. Компоненты автомобильного бензина каталитического крекинга в нормальных условиях хранения достаточно химически стабильны.

    Автомобильные бензины представляют собой, как правило, смеси многих компонентов. Среди них есть фракции, полученные в разных процессах, в том числе и высокооктановые продукты каталитического крекинга. В зависимости от марки бензина состав компонентов может колебаться в широких пределах. Так же, как и при приготовлении авиационных бензинов, в пределах, разрешенных стандартом, к автомобильным бензинам (кроме бензина А-72) допускается добавление этиловой жидкости.

    Для обеспечения нормальной работы более экономичных двигателей с высокими степенями сжатия все больше вырабатывается высококачественных автомобильных бензинов АИ-93 и АИ-98. Эти бензины имеют октановые числа по исследовательскому методу соответственно 93 и 98 пунктов; максимально допустимая концентрация тетраэтилсвинца в бензинах не должна превышать 0,82 г на 1 кг бензина, температура конца кипения их не должна быть выше 195°С. Бензины АИ-93 и АИ-98 обладают хорошей стабильностью, что позволяет хранить их длительное время.

    Легкий газойль. Легкий каталитический газойль (дистиллят с н. к. 175 -- 200 °С и к. к. 320 -- 350 °С) по сравнению с товарными дизельными фракциями имеет более низкое цетановое число и повышенное содержание серы. Цетановое число легкого каталитического газойля, полученного из легких соляровых дистиллятов парафинового оснований, составляет 45 -- 56, из нафтеноароматических дистиллятов -- 25 -- 35. При крекинге более тяжелого сырья цетановое число легкого газойля несколько выше, что объясняется меньшей глубиной превращения. Цетановые числа с повышением температуры крекинга снижаются. Легкие каталитические газойли содержат непредельные углеводороды и значительные количества .(28 -- 55%) ароматических углеводородов. Температура застывания этих газойлей ниже, чем температура застывания сырья, из которого они вырабатываются.

    На качество легкого газойля влияет не только состав сырья, но и катализатор и технологический режим. С повышением температуры выход легкого каталитического газойля и его цетановое число уменьшаются, а содержание ароматических углеводородов в нем повышается. Понижение объемной скорости, сопровождающееся углублением крекинга сырья, приводит к тем же результатам. При крекинге с рециркуляцией выход легкого газойля снижается (в большинстве случаев он подается на рециркуляцию), уменьшает его цетановое число и возрастает содержание в нем ароматических углеводородов.

    Легкие каталитические газойли используются в качестве компонентов дизельного топлива в том случае, если смешиваемые компоненты дизельного топлива, получаемые при первичной перегонке нефти, имеют запас (превышение) по цетановому числу и содержат серы в количестве ниже нормы. В других случаях легкий газойль используют лишь в качестве сырья (или его компонента) для получения сажи (взамен зеленого масла) или в качестве разбавителя при получении мазутов. Возможно и комбинированное использование легкого газойля, В этом случае его подвергают экстракции одним из растворителей, применяемых в производстве масел селективным методом. Легкий газойль, частично освобожденный от ароматических углеводородов, после отгонки растворителя (рафинат) имеет более высокое цетановое число, чем до экстракции, и может быть использован в качестве дизельного топлива; нижний слой, содержащий большую часть ароматических углеводородов, также после отгонки растворителя (экстракт) может быть использован в качестве сырья для получения высококачественной сажи.

    Тяжелый газойль. Тяжелый газойль является остаточным продуктом каталитического крекинга. Качество его зависит от технологических факторов и характеристик сырья, а также от качества легкого газойля. Тяжелый газойль может быть загрязнен катализаторной пылью; содержание серы в нем обычно выше, чем в сырье каталитического крекинга. Тяжелый газойль используют либо при приготовлении мазутов, либо в качестве сырья для термического крекинга и коксования. В последнее время его использует как сырье для производства сажи.

    2 Химизм и механизм реакций каталитического крекинга
    Механизм их до конца неясен, но на основании анализа образующихся продуктов качественно можно выделить следующие реакции. Основные реакции:

    • крекинг парафинов (дает парафин и олефин);

    • крекинг олефинов (дает олефин + олефин);

    • деалкилирование АрУ (отрыв или крекинг алкильных цепей);

    • крекинг нафтенов (дает циклогексан + олефин без разрыва кольца).

    Вторичные реакции (определяют состав конечных продуктов крекинга):

    • перенос водорода (нафтен + олефин дают ароматику + алкан);

    • изомеризация (алкан дает изоалкан);

    • перенос акл ильных групп (бензол + ксилол дают два толуола);

    • конденсация бензольных колец;

    • диспропорционирование олефинов низкой молекулярной массы.

    Данный процесс чаще всего осуществляется на алюмосиликатных катализаторах - типичных катализаторах ионных реакций. В их присутствии реакции идут не по свободно-радикальному механизму, а по ионному, через промежуточную стадию положительно заряженных карбониевых ионов. Последние образуются из олефинов, которые образуются при термическом распаде сырья, и протонов генерируемых катализатором кислотного типа:

    Ионы карбония не устойчивы и способны распадаться на молекулу олефина и ион карбония с более короткой углеродной цепью. Кроме того, они могут отнимать водород в виде гидрид-иона других нейтральных молекул, также превращая их в ионы карбония. Благодоря чему развивается ионно-цепной механизм расщепления парафинов:

    В отличие от свободных радикалов, ионы карбония легко изомеризуются,о чем говорилось раньше. В следствие этого бензин каталитического крекинга содержит много изопарафинов, имеющих более высококе октановое число по сравнению с н-парафинами. Этот эффект еще усиливается из-за повышенного числа ароматических углеводородов, которые образуются не только через диены, но и за счет каталитического перераспределения водорода между молекулами олефина и нафтена:

    Алканы. Так же как и при термическом крекинге, алканы распадаются на алкен и алкан меньшей молекулярной массы. Распад происходит в нескольких местах углеродной цепи, но не на самом ее конце. Выходы метана, этана и этилена незначительны. В газе накапливаются углеводороды Сз-С4. Скорость распада в десятки раз больше, чем при термическом крекинге.

    Алкены. Скорость распада алкенов при каталитическом крекинге в тысячи раз больше, чем при термическом крекинге. Помимо распада алкены вступают в реакции полимеризации - деполимеризации, перераспределения водорода, изомеризации, циклизации.

    Особенно разнообразны реакции изомеризации. Здесь имеют место структурная перегруппировка, перемещение двойной связи вдоль цепи, возможна и цис-, транс-изомерия.

    Циклоалканы. Реакции, характерные для крекинга циклоалканов - деалкнлирование, дегидрирование, распад кольца, - ускоряются в присутствии катализатора в 500-4000 раз.

    Для всех реакций распада циклоалканов, так же как и для углеводородов с открытой цепью, характерно образование осколков не ниже С3.

    Арены. Скорость и направление превращений аренов при каталитическом крекинге в большой мере зависит от строения и молекулярной массы крекируемого углеводорода.

    Гомологи бензола преимущественно полностью теряют боковые цепи, что приводит к накоплению бензола. Труднее всего крекируется толуол. По мере увеличения длины боковой цепи и ее разветвления глубина деалкилирования резко возрастает.

    3 Современные и перспективные процессы каталитического крекинга
    В США, Японии, Китае, Индонезии, Южной Корее и странах Западной Европы широкое внедрение получили установки каталитического крекинга лифт-реакторного типа ККЛР (III поколение) с двухступенчатым регенератором для переработки остаточных видов сырья. На этих установках производительностью от 2 до 4 млн т/год перерабатывают преимущественно смеси прямогонных газойлей с мазутом или гидроочищенным мазутом, реже с гудроном после деметаллизации и деасфальтизации или без подготовки с коксуемостью до 8…10 % и содержанием суммы ванадия и никеля до 66 мг/кг. Общей характерной особенностью этих процессов является наличие в регенераторах холодильников (комбусторов) катализатора для снятия избыточного тепла регенерации. Отличаются они друг от друга прежде всего расположением ступеней регенерации, а также способом отвода дымовых газов регенерации. Отличительная особенность реакторного блока процесса НОС — соосное расположение реактора и регенератора с внешним монтажом лифт-реактора. На установках, на которых утилизируют остаточные виды сырья, в отличие от перерабатывающих вакуумные и глубоковакуумные газойли, предварительный подогрев сырья в среднем снижен на 30 °С, температуры в реакторе и регенераторе повышены примерно на 10 и 25 °С соответственно, используются дожиг СО, иногда обогащение воздуха кислородом, пассивация металлов, впрыск водяного пара на распыл сырья и более эффективные форсунки. С переходом на переработку остаточных видов сырья существенно повысилась концентрация металлов на равновесных катализаторах, что привело к повышению расхода катализаторов (от 0,5 до 4 кг/м3).

    В таблице 1 представлено, как в процессах RCC, R-2-R и НОС достигается выход ≈ 55…65 % об. бензина (н. к. — 220 °С) и 22…28 % об.
    Таблица 1 - Качество сырья и выходы продуктов ККЛР

    Параметр

    РСС мазут

    R-2-R мазут

    НОС мазут

    Коксуемость по Конрадсону

    -

    6,0

    5,9

    Содержание металлов (Ni + V), г/т

    44,0

    22,0

    29,3

    Выход:










    сухой газ + H2S, % мас.

    3,3

    4,7

    3,4

    С3–С4, % об.

    25,2

    28,4

    23,5

    бензин с к.к 221 °С, % об.

    57,8

    60,9

    65,3

    легкий газойль с к. к. 343 °С, % об.

    15,0

    12,1

    14,5

    тяжелый газойль > 343 °С, % об.

    8,4

    5,7

    4,0

    кокс, % мас.

    8,4

    7,5

    8,7


    В 1991 г. фирма Барко (США) предложила технологию нового (4-го поколения) процесса каталитического крекинга с ультракоротким временем контакта, так называемый миллисекундный крекинг — ККМС. Исходное нагретое и диспергированное сырье вводят перпендикулярно нисходящему из регенератора потоку катализатора; крекинг осуществляют на горизонтальном патрубке небольшой длины; далее продукты реакции и катализатор подают в сепаратор с циклонами для быстрого разделения. Катализатор после отпарки водяным паром направляют в регенератор с кипящим слоем (одно- или двухступенчатый, в зависимости от коксуемости сырья). Малое время контакта (менее 0,1 с) позволяет значительно уменьшить долю нежелательных вторичных реакций. В результате возрастает выход бензина и ∑C3 – C4 и снижается выход газойлевых фракций. Капитальные затраты на монтаж реактора ККМС примерно на 20…30 % меньше, ввиду небольших размеров и малой высоты по сравнению с лифт-реакторами.

    4 Катализаторы процесса
    В настоящее время используются только цеолитсодержащие катализаторы (ЦСКК), включающие в свой состав от 3 до 25 % цеолита типа «У» в РЗЭ-форме (размер входных окон 0,74 нм, а внутренних полостей 1,2 нм). Матрица ЦСКК - аморфный алюмосиликат или оксид алюминия.

    Чистый цеолит не применяется, так как он очень активен, непрочен и дорог, а ввод его в матрицу дает оптимальное распределение кислотных центров (в итоге - лучшую селективность), прочность, термостойкость. Основные показатели свойств катализаторов:

    Активность (или индекс активности) - выход бензина в % на стандартном сырье и в стандартных условиях.

    Равновесная активность - установившаяся в системе в рабочих условиях активность катализатора.

    Стабильность - это свойство сохранять активность во времени. Индекс стабильности - способность сохранять активность в течение 6 ч в стандартных условиях.

    Селективность - это отношение выхода бензина к суммарной конверсии сырья, выраженное в процентах (обычно 50-75 %).

    Термостабильность - свойство сохранять активность при многократном нагреве катализатора (выжиге кокса).

    Паростабильность - свойство сохранять активность при многократном воздействии водяного пара при 750 °С (крекинг идет в присутствии водяного пара).

    Прочность на истирание или удар - это потеря массы катализатора в стандартных условиях за определенное время.

    Регенерационная способность - скорость выжига кокса, выраженная в г/(л-ч), но обычно - в кг кокса с 1 т катализатора в час, равная 50-80 кг/(т-ч).

    Регенерация катализаторов ведется горячим воздухом при температуре 650-750 °С, причем эта температура регулируется количеством дутья при коэффициенте избытка воздуха 1. При этом часть кокса сгорает до СО2 (теплота сгорания 33 МДж/кг), а остальной кокс - до СО (теплота сгорания 10 МДж/кг). Обычно в продуктах горения кокса мольное соотношение СО:СО2 равно примерно 1:1.

    В закоксованном катализаторе содержится 1,2-2,0 % (мас.) кокса, а после регенерации - не более 0,1 % (стремятся к 0,05 %).

    Катализаторы крекинга непрерывно совершенствуются. По последним данным, в ЦСКК вводят до 40 % цеолита типа Фожазит в РЗЭ-форме или в ультрастабильной деалюминированной форме.

    Очень важна вторичная пористая структура ЦСКК, т. к. эти поры (эквивалентный диаметр 100-500 нм) должны обеспечить транспорт больших молекул сырья к цеолитным кристаллам.

    Для крекинга остаточного сырья катализатор, кроме всего прочего, должен быть стойким к дезактивации металлами, термо- и паростабильным, давать малый выход кокса и быть дешевым (т. к. растет его расход из-за дезактивации).

    Основными фирмами - производителями катализаторов крекинга в настоящее время являются Grace, Akzo-Nobel, Engelhard, Exxon, Mobil Oil, Union Carbid, Akzo Chemie и др. Они выпускают широкий набор катализаторов для переработки разных типов сырья и получения продуктов различного качества. Основными фирмами - поставщиками катализаторов на мировом рынке являются первые три из перечисленных выше. Свойства катализаторов, наиболее часто используемых на промышленных установках каталитического крекинга, приведены в таблице ниже под номером 3.8.

    Катализаторы фирмы Grace. Около 50% производства катализаторов на мировом рынке приходится на катализаторы этой фирмы. Она первой начала выпуск промышленных образцов, содержащих ультрастабильный цеолит типа Y. Катализаторы серии Octacat с высоким содержанием цеолита Y, имеющие в своем составе цеолиты РЗЭУ, доминировали на мировом рынке с 1975 по 1982 г. Катализаторы серии DA с 1986 г. до настоящего времени остаются лучшими по стойкости к истиранию в жестких условиях эксплуатации. Основным направлением совершенствования катализаторов крекинга фирмы Grace является улучшение селективности по коксу, так как в сырье крекинга все чаще вовлекаются тяжелые нефтяные остатки. Наиболее эффективный путь ее улучшения - оптимизация соотношения активностей цеолита и матрицы, которое в значительной степени зависит от качества перерабатываемого сырья. Сырье с температурой конца кипения до 500°С более эффективно и селективно крекируется на чисто цеолитном катализаторе (без активной матрицы). Однако при содержании в сырье фракций, выкипающих выше 500°С, крупные, высококипящие молекулы крекируются на поверхности мезои макропор матрицы с образованием более легких углеводородов, которые могут подвергаться дальнейшему расщеплению на цеолитах. Оптимизация соотношения цеолита и матрицы становится особенно важной при накоплении на катализаторе значительного количества отравляющих металлов. Фирма Grace добивается определенного постоянного соотношения цеолита и матрицы, которое варьируется для разных катализаторов в широком диапазоне от 0,8 до 30%.

    5 Каталитический крекинг в России и мире
    Каталитический крекинг является одним из крупнотоннажных процессов, после каталитического риформинга, обеспечивающих глубокую переработку нефти и в значительной мере определяет технико-экономические показатели современных НПЗ топливного профиля. Мощностей каталитического крекинга на российских НПЗ в настоящее время явно недостаточно, поэтому в ближайшие годы именно за счёт ввода строительства и ввода новых установок каталитического крекинга в дальнейшем можно решить проблему с прогнозируемым дефицитом бензина.

    Развития промышленного процесса каталитического крекинга неразрывно связано созданием непрерывного процесса с реакторно-регенераторным блоком и разработкой новых катализаторов. Важнейшим событием в усовершенствовании процесса каталитического крекинга стало использование цеолитсодержащих катализаторов. Активность катализаторов каталитического крекинга за прошедшие почти 80 лет возросла более 300 раз, а выход бензина увеличился от 20-25 % до 45-55 %. Для использования всех преимуществ цеолитсодержащего катализатора стали применять новые типы реакторно-регенераторных аппаратов: вначале с кипящим слоем катализатора, а затем лифт-реактор.Все это позволило усовершенствовать технологию процесса и увеличить мощность единичных установок от 50 тысяч тонн в год до 2,0-2,5 млн тонн в год.

    В последние 10-15 лет процесс каталитического крекинга был значительно усовершенствован, главным образом на основе модернизации реактора и регенератора, создания наиболее эффективных способов контактирования катализатора с сырьём и подготовки сырья с целью увеличения выхода целевых продуктов и повышения их качества.

    На 13 отечественных НПЗ в настоящее время эксплуатируются 20 установок каталитического крекинга. В перспективе намечается строительство установок каталитического крекинга в Салавате, Кстово, Волгограде, Кириши, Перми, Ачинске. По прогнозам в 2020 году объем каталитического крекинга увеличится до 26-27 млн тонн в год.

    Таким образом, в ближайшем будущем в производстве автомобильных бензинов, удовлетворяющих современным экологическим требованиям, бензин каталитического крекинга и компоненты, сопряженные с ним процессов (алкилирование, получение оксигенатов, полимербензинов и др.), будут основными компонентами наравне с бензином риформинга, для производства которого требуются дополнительные ресурсы прямогонных бензинов и, соответственно, нефть.

    ЗАКЛЮЧЕНИЕ
    Каталитический крекинг - термокаталитическая переработка нефтяных фракций с целью получения компонента высокооктанового бензина, легкого газойля и непредельных жирных газов.

    Каталитический крекинг - один из важнейших процессов, обеспечивающих глубокую переработку нефти. Внедрению каталитического крекинга в промышленность в конце 30-х гг. 20 в. (США) способствовало создание эффективного с большим сроком службы катализатора на основе алюмосиликатов. Основное достоинство процесса - большая эксплуатационная гибкость: возможность перерабатывать различные нефтяные фракции с получением высокооктанового бензина и газа, богатого пропиленом, изобутаном и бутенами; сравнительная легкость совмещения с другими процессами, например, с алкилированием, гидрокрекингом, гидроочисткой, адсорбционной очисткой, деасфальтизацией и т. д. Такой универсальностью объясняется весьма значительная доля каталитического крекинга в общем объёме переработки нефти.
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


    1. Нефтеперерабатывающая промышленность США и бывшего СССР / В.М. Капустин, С.Г. Кукес, Р. Г. Бертолусисни, - М. Химия 1995г. - 301 с.

    1. Шарипов Р.А., Сидоров Г.М., Зиннатуллин Р.Р., Дмитриев Ю.К. Роль процесса каталитического крекинга в производстве высокооктановых автомобильных бензинов // Современные проблемы науки и образования. - 2015. - № 1-1.; URL: http://www.science-education.ru/ru/article/view?id=18061 

    2. Ахметов С. А. Технология и оборудование процессов переработки нефти и газа: Учебное пособие / С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М.И. Баязитов; Под ред. С. А. Ахметова. - СПб.: Недра, 2006. - 868 с.

    3. Смидович Е. В. Технология переработки нефти и газа. Ч. 2-я. Крекинг нефтяного сырья и переработка углеводо­родных газов. 3-е изд., пер. и доп. - М.: Химия, 1980 - 328 с.

    4. Справочник механика химических и нефтехимических производств / З.З. Рахмилевич и др. – М.: Химия, 1978. – 352с.


    написать администратору сайта