Реферат сау. Классификация систем автоматического управления 6
Скачать 42.25 Kb.
|
Содержание Введение 2 Классификация систем автоматического управления 6 1 Системы автоматической стабилизации, программного регулирования и следящие системы 7 2 Системы статического и астатического регулирования 10 3 Системы непрерывного, импульсного и релейного действия 10 4 Системы регулирования по возмущению и системы комбинированного регулирования 11 5 Самонастраивающиеся системы 12 Заключение 14 Введение В основных направлениях экономического и социального развития становится задача развивать производство электронных устройств регулирования и телемеханики, исполнительных механизмов, приборов и датчиков систем комплексной автоматизации сложных технологических процессов, агрегатов, машин и оборудования. Автоматика – отрасль науки и техники, охватывающая теорию и принципы построения систем управления, действующих без непосредственного участия человека; в узком смысле - совокупность методов и технических средств, исключающих участие человека при выполнении операций конкретного процесса. Как самостоятельная область техники автоматика получила признание на 2-й Мировой энергетической конференции (Берлин, 1930), где была создана секция по вопросам автоматического и телемеханического управления. В СССР этот термин получил распространение в начале 30-х гг. Впервые, по-видимому, с необходимостью построения регуляторов столкнулись создатели высокоточных механизмов, в первую очередь - часов. Даже небольшие, всё время действующие в них помехи приводили в конечном итоге к отклонениям от нормального хода, недопустимым по условиям точности. Противодействовать этим помехам чисто конструктивными средствами, например, улучшая обработку деталей, повышая их массу или увеличивая развиваемыми устройствами полезные усилия, не удавалось, и для решения проблемы точности в состав системы стали вводить регуляторы. Ещё одной причиной, побуждавшей строить регуляторы, была необходимость управлять процессами, протекавшими при наличии столь сильно изменяющихся помех, в первую очередь нагрузки, что при этом утрачивалась не только точность, но и работоспособность системы. Предвозвестниками регуляторов для подобных условий можно считать применявшиеся ещё в средние века регуляторы хода водяных мукомольных мельниц с центробежными маятниковыми элементами. Развитие промышленных регуляторов началось на рубеже XVIII и XIX столетий, в эпоху промышленного переворота в Европе. Первыми промышленными регуляторами этого периода являются автоматический поплавковый регулятор питания котла паровой машины, построенный в 1765 г. И.И.Ползуновым, и центробежный регулятор скорости паровой машины, на который в 1784 г. получил патент Дж. Уатт. В методологию исследования внесли вклад также работы И.А.Вышнеградского «Об общей теории регуляторов» (1876), «О регуляторах прямого действия» (1877) и работа Д.К. Максвелла «О регуляторах» (1866). Крупный вклад в теорию регулирования внесён Н.Е. Жуковским, автором труда «О прочности движения» и первого русского учебника «Теория регулирования хода машин» (1909). Жуковский дал математическое описание процессов в длинных трубопроводах, рассмотрел влияние сухого трения в регуляторах, исследовал некоторые процессы импульсного регулирования. Изменение автоматически управляемых систем, связанные с повышением интенсивности процессов, усложнения структуры и повышением требований, предъявляемых к скорости протекания, точности и качеству процессов, приводят к необходимости создания более эффективных аналитических методов исследования систем. Мысль исследователей обращается к частотным методам, позволяющим сочетать тонкие аналитические и наглядные графические приёмы, теоретические и экспериментальные методы исследования. Первые шаги в этом направлении делаются в предвоенные годы. Появляются работа Х. Найквиста (1932), в которой предлагался критерий устойчивости радиотехнических усилителей с обратной связью, основанный на свойстве частотной характеристики разомкнутой системы, и работа А.В. Михайлова «Гармонический метод в теории регулирования» (1938), открывшая новый этап в теории регулирования. В последней обосновалась целесообразность использования частотных методов в теории регулирования и предлагались новые методы, в честности «критерий Михайлова», не требующий предварительного размыкания цепи регулирования. В послевоенный период частотные методы быстро вошли в практику. В 1946 году Г. Боде. и Л. Мак Кол ввели логарифмические частотные характеристики. Флойд для исследования качества предложил приближённую разбивку вещественной частотной характеристики на трапеции. Г. Браун, А. Холл, Д. Кемпбелл, Г. Честнат, А.В. Михайлов, В.В. Солодовников и др. завершили разработку частотных методов синтеза и расчёта систем, придав им форму, удобную для инженерных расчётов. В эти же годы усилия исследователей направляются на разработку общих основ теории нелинейных систем. Трудность проблемы заключалась в том, что не существовало единого общего математического аппарата для решения нелинейных задач. Продвинуться в этом направлении удалось тогда, когда из множества частных видов нелинейных систем были выделены для исследования узкие с математической точки зрения, но достаточно широкие в практических приложениях классы - системы, в которых выделяется две связанные части: общая (линейная) часть и безынерционный элемент с нелинейной статической характеристикой. Одно из важных направлений исследования устойчивости нелинейных систем, основывающееся на работах А.М.Ляпунова (1896) , развивалось в СССР в работах Н.Г. Четаева (1945), А.И. Лурье (1944-1951), А.М. Лётова (1955) и др. Завершающим этапом развития этого направления можно считать разработку теории абсолютной устойчивости. Проблема была выдвинута в работах А.И. Лурье и В.Н.Постникова (1944), в более отчётливой постановке - М.А. Айзерманом (1949, 1963), и доведена до изящного решения румынским учёным В.М.Поповым (1959), в котором использовались частотные представления, В.А.Якубовичем и др. Большое значение для качественного исследования нелинейных систем имеют методы, базирующиеся на представлении переходных процессов траекториями в фазовых плоскости и пространстве. Основы направления были заложены А.А. Андроновым и его школой в 30-е – 40-е годы. Метод фазовой плоскости, обладая большой наглядностью и глобальным охватом всех возможных движений, несмотря на ограниченность главным образом уравнениями второго и третьего порядков, вскрыл ряд специфических особенностей процессов в нелинейных системах - наличие предельных циклов, скользящих режимов, захватывание колебаний и т.п. Сочетание фазовых представлений с аналитическими методами дало возможность предложить и исследовать новый важный класс систем с переменной структурой, сохраняющих высокое качество работы в условиях значительных изменений параметра объекта (С.В.Емельянов и др., 60-е годы). Работа в этом направлении удостоена Ленинской премии в 1971 г. Я.З.Цыпкиным были разработаны основы теории релейных (1955) и импульсных (60-е годы) систем с различными видами модуляции. Цикл этих работ удостоен Ленинской премии в 1960 г. Для определения параметров автоколебаний приближенными методами Н.М.Крыловым и Н.Н.Боголюбовым был разработан метод гармонического баланса (1934). Л.С.Гольдфарбом был преложен графо-аналитический метод нахождения частоты и амплитуды основной гармоники автоколебаний с помощью частотных характеристик. Дальнейшее развитие этот метод получил развитие в работах Е.П.Попова и др. Развитие теории автоматического регулирования в послевоенные годы было исключительно интенсивным и многогранным. Даже упомянуть о многих направлениях и авторах в коротком обзоре не представляется возможным. Ограничимся перечислением основных новых разделов, которым посвящены разработки новых фундаментальных принципов управления, выполненные советскими авторами. В трудах Г.В. Щипанова, В.С. Кулебакина, Б.Н. Петрова и других были разработаны теория автоматического регулирования по возмущению, теория компенсации возмущений и инвариантности. В.В. Казакевичем, А.П. Юркевичем, А.А. Фельдбаумом, А.А. Красовским и другими были сформулированы и исследованы принципы экстремального управления и разработана теория экстремальных систем и поиска дуального управления, осуществляющего поиск показателя экстремума качества работы системы. Работами А.А. Фельдбаума, Л.С. Понтрягина, Н.Н. Красовского и многих других созданы теории оптимального управления, в которых исследуются управляющие воздействия, обеспечивающие максимальное значение функционала, выражающего технико-экономическую эффективность динамического процесса управления. Разработка теории экстремальных и оптимальных принципов управления дала основание расширить название курса «Теория автоматического регулирования», назвав его «Теория автоматического регулирования и управления», поскольку рассматриваемые виды управления не ограничиваются только регулированием. Значение теории автоматического управления в настоящее время переросло в рамки непосредственно технических систем. Динамически управляемые процессы имеют место в живых организмах, в экономических и организационных человеко-машинных системах. Законы динамики в них не являются основными и определяющими принципы управления, как это свойственно техническим системам, но, тем не менее, их влияние зачастую существенно и отказ от их учёта приводит к крупным потерям. Классификация систем автоматического управления По характеру изменения управляющего воздействия различают системы автоматической стабилизации, программного регулирования и следящие системы. По виду передаваемых сигналов выделяют системы непрерывные, с гармонической модуляцией, импульсные, релейные и цифровые. По способу математического описания, принятого при исследовании, выделяют линейные и нелинейные системы. Обе группы могут быть представлены непрерывными, дискретными и дискретно-непрерывными системами. По виду контролируемых изменений своих свойств различают неприспосабливающиеся и приспосабливающиеся (адаптивные) системы. В последнем классе можно выделить самонастраивающиеся системы с самонастройкой параметров или воздействий и самоорганизующиеся системы с контролируемыми изменениями структуры. В зависимости от принадлежности источника энергии, при помощи которого создаётся управляющее воздействие, системы могут быть прямого и непрямого действия. В системах прямого действия используется энергия управляемого объекта. К ним относятся простейшие системы стабилизации (уровня, расхода, давления и т.п.), в которых воспринимающий элемент через рычажную систему непосредственно действует на исполнительный орган (заслонку, клапан и т.д.). В системах непрямого действия управляющее воздействие создаётся за счёт энергии дополнительного источника. Системы автоматической стабилизации, программного регулирования и следящие системы Системы автоматической стабилизации характеризуются тем, что в процессе работы системы управляющее воздействие остаётся величиной постоянной. Основной задачей системы автоматической стабилизации является поддержание на постоянном уровне с допустимой ошибкой регулируемой величины независимо от действующих возмущений. Действующие возмущения вызывают отклонение регулируемой величины от предписанного ей значения. Отклонением регулируемой величины называется разность между значением регулируемой величины в данный момент времени и её значением, принятым за начало отсчёта. Понятие отклонения регулируемой величины является характерным для систем автоматической стабилизации и позволяет дать качественную оценку динамическим свойствам систем этого класса. Системами автоматической стабилизации являются различного рода САР (системы автоматического регулирования), предназначенные для регулирования скорости, напряжения, температуры, давления; например, стабилизатор курса самолёта и т.д. Система автоматического регулирования представляет собой комплекс, состоящий из регулируемого объекта и регулятора. Регулятор включает в себя такие основные элементы, как элемент сравнения, усилитель, исполнительный элемент и корректирующие устройства. Обычно системы автоматического регулирования представляют в виде структурных схем. Эта структурная схема может представлять все три группы систем, то есть системы автоматической стабилизации, следящие системы и системы программного регулирования. Принципиальной разницы между этими системами по применению и назначению элементов нет. Есть некоторое различие в задающем элементе. Так, например, задающий элемент в системе автоматической стабилизации вырабатывает управляющее воздействие постоянной величины, которое называется установкой регулятора и с которой сравнивается регулируемая величина при работе системы. При работе схемы в режиме следящей системы задающий элемент должен обеспечить измерение управляющего сигнала, поступающего на следящую систему извне. Системы программного регулирования отличаются тем, что управляющее воздействие изменяется по заранее установленному закону в функции времени или координат системы. О точности воспроизведения управляющего воздействия на выходе системы воспроизведения судят по величине ошибки, которая определяется разность между управляющим воздействием и регулируемой величиной в данный момент времени. Примером систем программного регулирования могут служить системы управления копировально-фрезерным станком. В следящих системах управляющее воздействие также является величиной переменной, но математическое описание его во времени не может быть установлено, так как источником сигнала служит внешнее явление, закон изменения которого заранее неизвестен. В качестве примера следящей системы можно указать на радиолокационную станцию автоматического сопровождения самолёта. Так как следящие системы предназначены для воспроизведения на выходе управляющего воздействия с возможно большей точностью, то ошибка, так же как и в случае систем программного регулирования, является той характеристикой, по которой можно судить о динамических свойствах следящей системы. Ошибка в следящих системах, как и в системах программного регулирования, является сигналом, в зависимости от величины которого осуществляется управление исполнительным двигателем. Во всех трёх группах систем управляющее воздействие сравнивается с регулируемой величиной. Для выполнения операции сравнения применяются устройства, называемые элементами сравнения. Управляющее воздействие и регулируемая величина, поступающие на два входа элемента сравнения, должны быть предварительно преобразованы и приведены к сигналам одного вида энергии и размерности. Эти операции выполняются измерительным элементом со стороны управляющего воздействия. В большинстве случаев непосредственное использование выходного сигнала элемента сравнения для приведения в действие регулирующего органа объекта не представляется возможным. Поэтому возникает необходимость в предварительном усилении сигнала как по величине, так и по мощности. Кроме того, часто необходимо осуществить и преобразование сигнала, связанное с формой представления воздействия, и перевод его из одного вида энергии в другой. Эти функции обычно выполняются тем или иным усилителем. Таким образом, в системах автоматического регулирования в числе основных устройств применяют усилительный элемент. В практике могут встретиться случаи, когда применение усилителей не обязательно. При этом регулятор непосредственно действует на регулирующий орган и называется регулятор прямого действия. При наличии усилителей регулирующее устройство называется регулятором непрямого действия. В зависимости от наличия усилителей, автоматическая система называется, соответственно, системой прямого, либо непрямого регулирования. Приведение в действие регулирующего органа объекта обычно осуществляется с помощью исполнительного элемента. В системе автоматического регулирования, составленной из объекта регулирования, элемента сравнения, усилителя и исполнительного элемента, динамические процессы могут протекать недостаточно качественно, по тем или иным причинам процесс регулирования может оказаться вообще неустойчивым. Для того чтобы система автоматического регулирования обладала устойчивым процессом и удовлетворяла требуемым условиям качества процесса регулирования, применяют корректирующие устройства. Системы статического и астатического регулирования Системы автоматической стабилизации, следящие системы и системы программного регулирования также разделяют на две группы: системы статические и системы астатические (не имеющие статической ошибки). Система автоматического регулирования будет статической по отношению к возмущающему воздействию, если при стремлении возмущающего воздействия к постоянной величине отклонения регулируемой величины также стремится к постоянной величине, отличной от нуля и зависящей от величины приложенного воздействия. Систему автоматического регулирования можно назвать статической по отношению к управляющему воздействию, если при стремлении последнего к постоянной величине ошибка также стремится к постоянной, отличной от нуля, величине и зависит от значения приложенного воздействия. Система автоматического регулирования будет астатической по возмущающему воздействию, если при стремлении возмущающего воздействия к постоянной величине отклонение регулируемой величины стремится к нулю и не зависит от величины приложенного воздействия. Системы непрерывного, импульсного и релейного действия В зависимости от вида сигналов различают системы автоматического регулирования непрерывные, релейные и импульсные. Особенностью непрерывных систем является то, что во всех элементах, составляющих систему, входные и выходные сигналы являются непрерывными функциями времени. К числу непрерывных систем относятся также системы с гармонической модуляцией. При этом для передачи сигнала могут быть использованные амплитудно-модулированные, частотно-модулированные колебания и колебания с модулированной фазой. Системы регулирования по возмущению и системы комбинированного регулирования Процесс реализации компенсации возмущающего воздействия называется регулированием по возмущению. Регулирование по возмущению обладает достоинствами и недостатками. В числе достоинств следует отметить высокое быстродействие. К недостаткам нужно отнести то, что цепь компенсации обеспечивает необходимое качество регулирования только при действии того возмущения, на которое она рассчитана. При действии другого возмущения и необходимости компенсировать его действие нужно вводить новую цепь компенсации, что, конечно, усложняет систему. Цепь компенсации не является обратной связью, потому что по этой цепи передаётся входной сигнал, а не регулируемая (выходная) величина объекта. В системах, использующих принцип обратной связи или принцип регулирования по отклонению, решающее значение имеет сам факт отклонения регулируемой величины от установленной программы независимо от характера величины, вызвавшей это отклонение. Поэтому в системах автоматического регулирования по отклонению нет недостатка, имеющего место в системах регулирования по возмущению. В технике автоматического регулирования имеются системы, в которых совмещаются достоинства регулирования по отклонению и возмущению. Система, в которых одновременно используются оба принципа регулирования, называются комбинированными, а принципы в этих системах - комбинированным регулированием. Самонастраивающиеся системы Самонастраивающаяся система автоматического управления – самоприспосабливающаяся система, в которой приспособление к случайно изменяющимся условиям обеспечивается автоматическим изменением параметров настройки или путём автоматического поиска оптимальной настройки. В любой несамонастраивающейся автоматической системе управления имеются параметры, которые влияют на устойчивость и качество процессов управления и могут быть изменены при регулировке (настройке) системы. Если эти параметры остаются неизменными, а условия функционирования (характеристики управляемого объекта, возмущающие воздействия) существенно изменяются, то процесс управления может ухудшиться или даже стать неустойчивым. Ручная настройка системы часто оказывается обременительной, а иногда и невозможной. Использование в таких случаях адаптивных (самонастраивающихся) систем технически и экономически целесообразно и даже может оказаться единственным способом надёжного управления. Адаптивные системы подразделяют на поисковые и беспоисковые. В поисковых системах необходимое качество управления достигается в результате автоматического поиска оптимальной (в некотором смысле) настройки. Качество настройки характеризуется некоторым обобщённым показателем, связанным с первичными параметрами настройки сложным, обычно не вполне стабильным и недостаточно известным соотношением. Этот показатель измеряется непосредственно или вычисляется по измеренным значениям первичных параметров. Параметрам настройки в придаются поисковые или пробные изменения. Анализ колебаний показателя качества настройки, вызванных поисковыми воздействиями, позволяет установить, является ли настройка оптимальной, т. е. соответствующей экстремуму (максимуму или минимуму) показателя качества. Если имеют место отклонения от экстремума, то настройка изменяется до тех пор, пока не приблизится к оптимальной. Поисковые адаптивные системы могут работать при изменении внешних условий в широких пределах. Беспоисковые системы имеют перед поисковыми системами определённое преимущество, обусловленное тем, что поиск оптимального состояния отнимает значительное время, т. е. время самонастройки поисковых систем ограничено снизу. В них используется некоторый контролируемый показатель качества управления (например, значение производной контролируемого параметра по времени). Автоматической настройкой параметров этот показатель поддерживается в заданных пределах. В зависимости от вида показателя различают системы с контролем переходных процессов, с контролем частотных характеристик, с эталонной моделью и др. Всё это - замкнутые беспоисковые самонастраивающиеся системы с замкнутым контуром самонастройки, в котором параметры настройки автоматически изменяются при выходе показателя качества за допустимые пределы. Некоторые замкнутые беспоисковые системы близки к обычным нелинейным системам автоматического управления с пониженной чувствительностью к характеристикам объекта - к таким, например, как релейные системы или управления системы с переменной структурой. Наряду с замкнутыми применяют также разомкнутые беспоисковые адаптивные системы - системы параметрической компенсации. В них контролируются воздействия, вызывающие изменение свойств объекта, и по заранее рассчитанной программе изменяются параметры настройки системы; контур самонастройки в этом случае разомкнут. Такая самонастройка может быть почти мгновенной, однако её осуществление требует контроля окружающей среды и достаточно точного знания законов воздействия среды на управляемый объект. Самонастройка реализуется как специальной аппаратурой (в виде блоков самонастройки или самонастраивающихся экстремальных регуляторов), так и адаптивными алгоритмами центральных управляющих ЦВМ. Придание алгоритмам управления свойств самонастройки (адаптации) существенно расширяет возможности управления разнообразными процессами. Внедрение этих систем позволяет приблизиться к оптимальным режимам функционирования объектов, облегчает задачу унификации систем управления, сокращает время на испытания и наладку, снижает технологические требования на изготовление ряда узлов устройств управления, освобождает обслуживающий персонал от трудоёмких операций настройки. Практическое использование адаптивных систем и самонастраивающихся алгоритмов - одна из характерных черт технического прогресса в области управления. Заключение Воздействие, приложенное к системе автоматического регулирования, вызывает изменение регулируемой величины. Изменение регулируемой величины во времени определяет переходный процесс, характер которого зависит от воздействия и от свойств системы. Является ли система следящей системой, на выходе которой нужно воспроизвести как можно более точно закон изменения управляющего сигнала, или системой автоматической стабилизации, где независимо от возмущения регулируемая величина должна поддерживаться на заданном уровне, переходный процесс представляется динамической характеристикой, по которой можно судить о качестве работы системы. Любое воздействие, приложенное к системе, вызывает переходный процесс. Однако в рассмотрение обычно входят те переходные процессы, которые вызваны типовыми воздействиями, создающими условия более полного выявления динамических свойств системы. К числу типовых воздействий относятся сигналы скачкообразного и ступенчатого вида, возникающие, например, при включении системы или при скачкообразном изменении нагрузки; сигналы ударного действия, представляющие собой импульсы малой длительности по сравнению с временем переходного процесса. Чтобы качественно выполнить задачу регулирования в различных изменяющихся условиях работы система должна обладать определённым (заданным) запасом устойчивости. В устойчивых системах автоматического регулирования переходный процесс с течением времени затухает и наступает установившееся состояние. Как в переходном режиме, так и в установившемся состоянии выходная регулируемая величина отличается от желаемого закона изменения на некоторую величину, которая является ошибкой и характеризует точность выполнения поставленных задач. Ошибки в установившемся состоянии определяют статическую точность системы и имеют большое практическое значение. Поэтому при составлении технического задания на проектирование системы автоматического регулирования отдельно выделяются требования, предъявляемые к статической точности . Большой практический интерес представляет поведение системы в переходном процессе. Показателями переходного процесса являются время переходного процесса, перерегулирование и число колебаний регулируемой величины около линии установившегося значения за время переходного процесса. Показатели переходного процесса характеризуют качество системы автоматического регулирования и являются одним из важнейших требований, предъявляемых к динамическим свойствам системы. Таким образом, для обеспечения необходимых динамических свойств к системам автоматического регулирования должны быть предъявлены требования по запасу устойчивости, статической точности и качеству переходного процесса. В тех случаях когда воздействие (управляющее или возмущающее) не является типовым сигналом и не может быть сведено к типовому, то есть когда оно не может рассматриваться как сигнал с заданной функцией времени и является случайным процессом, в рассмотрение вводят вероятностные характеристики. Обычно при этом оценивается динамическая прочность системы с помощью понятия среднеквадратичной ошибки. Следовательно, в случае систем автоматического регулирования, находящихся под воздействием случайных стационарных процессов, для получения желаемых динамических свойств системы нужно предъявить определённые требования к величине среднеквадратичной ошибки. Список литературы Подлесный Н.И., Рубанов В.Г.: «Элементы систем автоматического управления и контроля», Киев.: Вища школа,1982 – 477с. Лукас В.А.: «Теория автоматического управления», М.: Недра, 1990 – 416с. Первозванский А.А.: «Курс автоматического управления», М.: Наука, 1986 – 367с. Ципкин Я.З.: «Основы теории автоматических систем», М.: Наука, 1977 – 436с. Воронов А.А., Титов В.К., Новоградов Б.Н.: «Основы теории автоматического регулирования и управления», М.: Высшая школа, 1977 – 519с. Косарев В.П., Королёв А.Ю.: «Экономическая информатика и вычислительная техника», М.: Финансы и статистика, 1996 – 336с. |