Главная страница
Навигация по странице:

  • Развитие знаний о клетке

  • 2.2. Клетка – единица строения, жизнедеятельности, роста и развития организмов. Многообразие клеток. Сравнительная характеристика клеток растений, животных, бактерий, грибов.

  • Многообразие клеток

  • Раздел 2. Клетка как биологическая система


    Скачать 22.74 Mb.
    НазваниеКлетка как биологическая система
    АнкорРаздел 2.docx
    Дата26.02.2017
    Размер22.74 Mb.
    Формат файлаdocx
    Имя файлаРаздел 2.docx
    ТипДокументы
    #3154
    страница1 из 7
      1   2   3   4   5   6   7

    Раздел 2. Клетка как биологическая система

    2.1. Клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира. Развитие знаний о клетке. Клеточное строение организмов, сходство строения клеток всех организмов – основа единства органического мира, доказательства родства живой природы.

    2.2. Клетка – единица строения, жизнедеятельности, роста и развития организмов. Многообразие клеток. Сравнительная характеристика клеток растений, животных, бактерий, грибов.

    2.3. Химическая организация клетки. Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Обоснование родства организмов на основе анализа химического состава их клеток.

    2.3.1. Неорганические вещества клетки.

    2.3.2. Органические вещества клетки. Углеводы, липиды.

    2.3.3. Белки, их строение и функции.

    2.3.4. Нуклеиновые кислоты.

    2.4. Строение про – и эукариотной клеток. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности.

    2.4.1. Особенности строения эукариотических и прокариотических клеток. Сравнительные данные.

    2.5. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле.

    2.5.1. Энергетический и пластический обмен, их взаимосвязь.

    2.5.2. Энергетический обмен в клетке (диссимиляция).

    2.5.3. Фотосинтез и хемосинтез.

    2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства.

    2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Сходство и отличие митоза и мейоза, их значение. Деление клетки – основа роста, развития и размножения организмов. Роль мейоза в обеспечении постоянства числа хромосом в поколениях.

    2.1. Клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира. Развитие знаний о клетке. Клеточное строение организмов, сходство строения клеток всех организмов – основа единства органического мира, доказательства родства живой природы.


    Современная клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира

    Одним из основополагающих понятий в современной биологии является представление о том, что всем живым организмам присуще клеточное строение. Изучением строения клетки, ее жизнедеятельности и взаимодействия с окружающей средой занимается наука цитология, в настоящее время чаще именуемая клеточной биологией. Своему появлению цитология обязана формулировке клеточной теории (1838-1839 гг., М. Шлейден, Т. Шванн, дополнена в 1855 г. Р. Вирховым).

    Клеточная теория является обобщенным представлением о строении и функциях клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

    Основные положения клеточной теории:

    1. Клетка — единица строения, жизнедеятельности, роста и развития живых организмов — вне клетки жизни нет.

    2. Клетка — единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование.

    3. Клетки всех организмов сходны по своему химическому составу, строению и функциям.

    4. Новые клетки образуются только в результате деления материнских клеток («клетка от клетки»).

    5. Клетки многоклеточных организмов образуют ткани, из тканей состоят органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.

    6. Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток — дифференцировка.

    Благодаря созданию клеточной теории стало понятно, что клетка является мельчайшей единицей жизни, элементарной живой системой, которой присущи все признаки и свойства живого. Формулировка клеточной теории стала важнейшей предпосылкой развития воззрений на наследственность и изменчивость, так как выявление их природы и присущих им закономерностей неизбежно наводило на мысль об универсальности строения живых организмов. Выявление единства химического состава и плана строения клеток послужило толчком и для развития представлений о происхождении живых организмов и их эволюции. Кроме того, происхождение многоклеточных организмов из единственной клетки в процессе эмбрионального развития стало догмой современной эмбриологии.

    Развитие знаний о клетке

    До XVII века человек вообще ничего не знал о микроструктуре окружающих его предметов и воспринимал мир невооруженным глазом. Прибор для изучения микромира — микроскоп — был изобретен приблизительно в 1590 году голландскими механиками Г. и 3. Янсенами, однако его несовершенство не давало возможности рассмотреть достаточно мелкие объекты. Лишь создание на его основе так называемого сложного микроскопа К. Дреббелем (1572-1634) способствовало прогрессу в данной области.

    В 1665 году английский ученый-физик Р. Гук (1635-1703) усовершенствовал конструкцию микроскопа и технологию шлифовки линз и, желая убедиться в улучшении качества изображения, рассматривал под ним срезы пробки, древесного угля и живых растений. На срезах он обнаружил мельчайшие поры, напоминающие пчелиные соты, и назвал их клетками (от лат. целлюла — ячейка, клетка). Интересно отметить, что Р. Гук считал главным компонентом клетки клеточную оболочку.

    Во второй половине XVII века появились работы виднейших микроскопистов М. Мальпиги (1628-1694) и Н. Грю (1641-1712), также обнаруживших ячеистое строение многих растений.

    Чтобы удостовериться, что увиденное Р. Гуком и другими учеными является правдой, не имевший специального образования голландский торговец А. Левенгук самостоятельно разработал конструкцию микроскопа, принципиально отличавшуюся от уже существующей, и усовершенствовал технологию изготовления линз. Это позволило ему достичь увеличения в 275-300 раз и рассмотреть такие детали строения, которые были технически недоступны остальным ученым. А. Левенгук был непревзойденным наблюдателем: он тщательно зарисовывал и описывал увиденное под микроскопом, но не стремился объяснить этого. Он открыл одноклеточные организмы, в том числе и бактерии, в клетках растений обнаружил ядра, хлоропласты, утолщения клеточных стенок, но оценить его открытия смогли намного позже.

    Открытия компонентов внутреннего строения организмов в первой половине XIX века следовали одно за другим. Г. Моль различил в клетках растений живое вещество и водянистую жидкость — клеточный сок, обнаружил поры. Английский ботаник Р. Броун (1773-1858) в 1831 году открыл ядро в клетках орхидей, затем оно было обнаружено во всех растительных клетках. Чешский ученый Я. Пуркинье (1787-1869) для обозначения полужидкого студенистого содержимого клетки без ядра ввел термин «протоплазма» (1840). Дальше всех современников продвинулся бельгийский ботаник М. Шлейден (1804-1881), который, изучая развитие и дифференциацию разнообразных клеточных структур высших растений, доказал, что все растительные организмы ведут свое происхождение от одной клетки. Он же рассмотрел в ядрах клеток чешуи лука округлые тельца-ядрышки (1842).

    В 1827 году русский ученый-эмбриолог К. Бэр обнаружил яйцеклетки человека и других млекопитающих, опровергнув тем самым представления о развитии организма исключительно из мужских гамет. Кроме того, он доказал формирование многоклеточного животного организма из единственной клетки — оплодотворенной яйцеклетки, а также сходство стадий зародышевого развития многоклеточных животных, которое наводило на мысль о единстве их происхождения.

    Сведения, накопленные к середине XIX века, требовали обобщения, которым и стала клеточная теория. Ее формулировке биология обязана немецкому зоологу Т. Шванну (1810-1882), который на основе собственных данных и выводов М. Шлейдена о развитии растений выдвинул предположение о том, что если в каком-либо видимом под микроскопом образовании присутствует ядро, то это образование является клеткой. Основываясь на данном критерии, Т. Шванн сформулировал основные положения клеточной теории.

    Немецкий врач и патолог Р. Вирхов (1821-1902) внес в эту теорию еще одно важное положение: клетки возникают только путем деления исходной клетки, т. е. клетки образуются только из клеток («клетка от клетки»).

    Со времени создания клеточной теории учение о клетке как о единице структуры, функции и развития организма непрерывно развивалось. К концу XIX века благодаря успехам микроскопической техники было уточнено строение клетки, описаны органоиды — части клетки, выполняющие различные функции, исследованы способы образования новых клеток (митоз, мейоз) и стало понятным первостепенное значение клеточных структур в передаче наследственных свойств. Применение новейших физико-химических методов исследования позволило углубиться в процессы хранения и передачи наследственной информации, а также исследовать тонкое строение каждой из структур клетки. Все это способствовало выделению науки о клетке в самостоятельную отрасль знания — цитологию.

    Клеточное строение организмов, сходство строения клеток всех организмов — основа единства органического мира, доказательства родства живой природы

    Все известные на сегодняшний день живые организмы (растения, животные, грибы и бактерии) имеют клеточное строение. Даже вирусы, которые не имеют клеточного строения, могут размножаться только в клетках. Клетка — элементарная структурно-функциональная единица живого, которой присущи все его проявления, в частности, обмен веществ и превращения энергии, гомеостаз, рост и развитие, воспроизведение и раздражимость. При этом именно в клетках хранится, перерабатывается и реализуется наследственная информация.

    Несмотря на все разнообразие клеток, план строения для них един: все они содержат наследственную информацию, погруженную в цитоплазму и окружающую клетку плазматическую мембрану.

    Клетка возникла в результате длительной эволюции органического мира. Объединение клеток в многоклеточный организм не является простым суммированием, так как каждая клетка, сохраняя все присущие живому организму признаки, в то же время приобретает новые свойства вследствие выполнения ею определенной функции. С одной стороны, многоклеточный организм можно разделить на составляющие его части — клетки, но с другой стороны, сложив их вновь воедино, невозможно восстановить функции целостного организма, так как лишь во взаимодействии частей системы появляются новые свойства. В этом проявляется одна из основных закономерностей, характеризующих живое, — единство дискретного и целостного. Небольшие размеры и значительное количество клеток создают у многоклеточных организмов большую поверхность, необходимую для обеспечения быстрого обмена веществ. Кроме того, в случае гибели одной части организма его целостность может быть восстановлена за счет воспроизведения клеток. Вне клетки невозможны хранение и передача наследственной информации, хранение и перенос энергии с последующим превращением ее в работу. Наконец, разделение функций между клетками в многоклеточном организме обеспечило широкие возможности приспособления организмов к среде обитания и явилось предпосылкой усложнения их организации.

    Таким образом, установление единства плана строения клеток всех живых организмов послужило доказательством единства происхождения всего живого на Земле.
    2.2. Клетка – единица строения, жизнедеятельности, роста и развития организмов. Многообразие клеток. Сравнительная характеристика клеток растений, животных, бактерий, грибов.
    Многообразие клеток
    Согласно клеточной теории клетка является наименьшей структурно-функциональной единицей организмов, которой присущи все свойства живого. По количеству клеток организмы делят на одноклеточные и многоклеточные. Клетки одноклеточных организмов существуют как самостоятельные организмы и осуществляют все функции живого. Одноклеточными являются все прокариоты и целый ряд эукариот (многие виды водорослей, грибов и простейшие животные), которые поражают чрезвычайным разнообразием форм и размеров. Однако большинство организмов все же является многоклеточными. Их клетки специализируются на выполнении определенных функций и образуют ткани и органы, что не может не отражаться на морфологических особенностях. Например, организм человека образован примерно из 1014 клеток, представленных примерно 200 видами, имеющими самые разнообразные формы и размеры.
    Форма клеток может быть округлой, цилиндрической, кубической, призматической, диско-видной, веретеновидной, звездчатой и др. (рис. 2.1). Так, яйцеклетки имеют округлую форму, клетки эпителия — цилиндрическую, кубическую и призматическую, форму двояковогнутого диска имеют эритроциты крови, веретеновидными являются клетки мышечной ткани, а звездчатую — клетки нервной ткани. Ряд клеток вообще не имеет постоянной формы. К ним относятся, прежде всего, лейкоциты крови.

    Размеры клеток также существенно варьируют: большинство клеток многоклеточного организма имеют размеры от 10 до 100 мкм, а наименьшие — 2-4 мкм. Нижний предел обусловлен тем, что клетка должна иметь минимальный набор веществ и структур для обеспечения жизнедеятельности, а слишком большие размеры клетки будут препятствовать обмену веществ и энергии с окружающей средой, а также будут затруднять процессы поддержания гомеостаза. Тем не менее некоторые клетки можно рассмотреть невооруженным взглядом. Прежде всего к ним относятся клетки плодов арбуза и яблони, а также яйцеклетки рыб и птиц. Даже если один из линейных размеров клетки превышает средние показатели, все остальные соответствуют норме. Например, отросток нейрона может в длину превышать 1 м, но его диаметр все равно будет соответствовать среднему значению. Между размерами клеток и размерами тела не существует прямой зависимости. Так, клетки мышц слона и мыши имеют одинаковые размеры.



    Прокариотические и эукариотические клетки
    Как уже упоминалось выше, клетки имеют много сходных функциональных свойств и морфологических особенностей. Каждая из них состоит из цитоплазмы, погруженной в нее наследственной информации, и отделена от внешней среды плазматической мембраной, или плазмалеммой, не препятствующей процессу обмена веществ и энергии. Снаружи от мембраны у клетки может быть еще клеточная стенка, состоящая из различных веществ, которая служит для защиты клетки и является своего рода ее внешним скелетом.

    Цитоплазма представляет собой все содержимое клетки, заполняющее пространство между плазматической мембраной и структурой, содержащей наследственную информацию. Она состоит

    из основного вещества — гиалоплазмы — и погруженных в нее органоидов и включений. Органоиды — это постоянные компоненты клетки, выполняющие определенные функции, а включения — возникающие и исчезающие в процессе жизни клетки компоненты, выполняющие в основном запасающую или выделительную функции. Часто включения делят на твердые и жидкие. Твердые включения представлены в основном гранулами и могут иметь различную природу, тогда как в качестве жидких включений рассматривают вакуоли и капли жира (рис. 2.2).

    В настоящее время различают два основных типа организации клеток: прокариотические и эукариотические.

    Прокариотическая клетка не имеет ядра, ее наследственная информация не отделена от цитоплазмы мембранами.

    Область цитоплазмы, в которой хранится наследственная информация в прокариотической клетке, называют нуклеоидом. В цитоплазме прокариотических клеток встречается, главным образом, один вид органоидов — рибосомы, а окруженные мембранами органоиды отсутствуют вовсе. Прокариотами являются бактерии.

    Эукариотическая клетка — клетка, в которой хотя бы на одной из стадий развития имеется ядроспециальная структура, в которой находится ДНК.

    Цитоплазма эукариотических клеток отличается значительным разнообразием органоидов. К эукариотическим организмам относят растения, животные и грибы.

    Размеры прокариотических клеток, как правило, на порядок меньше, чем размеры эукариотических. Большинство прокариот является одноклеточными организмами, а эукариоты — многоклеточными.


    Сравнительная характеристика строения клеток растений, животных, бактерий и грибов

    Кроме характерных для прокариот и эукариот особенностей, клетки растений, животных, грибов и бактерий обладают еще целым рядом особенностей. Так, клетки растений содержат специфические органоиды — хлоропласты, которые обусловливают их способность к фотосинтезу, тогда как у остальных организмов эти органоиды не встречаются. Безусловно, это не означает, что другие организмы не способны к фотосинтезу, поскольку, например, у бактерий он протекает на впячиваниях плазмалеммы и отдельных мембранных пузырьках в цитоплазме.

    Растительные клетки, как правило, содержат крупные вакуоли, наполненные клеточным соком. В клетках животных, грибов и бактерий они также встречаются, но имеют совершенно иное происхождение и выполняют другие функции. Основным запасным веществом, встречающимся в виде твердых включений, у растений является крахмал, у животных и грибов — гликоген, а у бактерий — волютин.

    Еще одним отличительным признаком этих групп организмов является организация поверхностного аппарата: у клеток животных организмов клеточная стенка отсутствует, их плазматическая мембрана покрыта лишь тонким гликокаликсом, тогда как у всех остальных она есть. Это целиком объяснимо, поскольку способ питания животных связан с захватом пищевых частиц в процессе фагоцитоза, а наличие клеточной стенки лишило бы их данной возможности. Химическая природа вещества, входящего в состав клеточной стенки, неодинакова у различных групп живых организмов: если у растений это целлюлоза, то у грибов — хитин, а у бактерий — муреин (табл. 2.1).

    Таблица 2.1
      1   2   3   4   5   6   7


    написать администратору сайта