Главная страница
Навигация по странице:

  • Транспортная функция.

  • Транспортные

  • Клеточная теория. Клеточная теория. Химический состав клетки


    Скачать 139.5 Kb.
    НазваниеКлеточная теория. Химический состав клетки
    Дата11.06.2019
    Размер139.5 Kb.
    Формат файлаdocx
    Имя файлаКлеточная теория.docx
    ТипРеферат
    #81294
    страница1 из 3
      1   2   3


    Реферат
    На тему: Клеточная теория. Химический состав клетки.

    1. ИЗУЧЕНИЕ КЛЕТКИ. КЛЕТОЧНАЯ ТЕОРИЯ

    Клетка основная структурная и функциональная единица организма.

    Долгое время биология изучала свойства животных и растений основе их макроскопического строения (видимого невооруженным глазом). Глубже в строение и функции организмов она проникла после открытия их клеточного строения и изучения клетки как основной структурной и функциональной единицы.

    Размеры клеток обычно порядка нескольких микрометров 1 мкм - 0,001 мм); самые мелкие—от 0,5 до 1,2 мкм, что делает недоступными для изучения невооруженным глазом. Открытие исследование клетки тесно связано с изобретением и усовершенствованием микроскопа.

    В 1665 г. английский естествоиспытатель Роберт Гук с помощью микроскопа впервые установил «клеточное строение» на случайно выбранном для наблюдения растительном объекте — мертвой Щи, пробке. Он ввел понятие «клетка» для обозначения наблюдения в пробке пустых ячеек, поэтому свойства живой материи Гук ошибочно связывал с клеточной стенкой.

    В последней трети XVII в. в работах голландского ученого А.. Левенгука были описаны выдающиеся открытия, в частности клеточное строение животных, но только в 30-е годы прошлого столетия было установлено, что клетки не полые пузырьки, а заполнены полужидким содержимым — «протоплазмой». В 1831 г. Р. Броун впервые описал ядро.

    В 1838 г. немецкий ботаник М. Шлейден пришел к заключению, что ядро является обязательным компонентом всех растительных клеток. Его соотечественник зоолог Т. Шванн, сопоставив клетки животных и растительных организмов, сделал вывод, что все они сходны. Это дало основание М. Шлейдену и Т. Шванну сформулировать основное положение клеточной теории: все растительные и животные организмы состоят из клеток, сходных по строению.

    В 1858 г. немецкий ученый Р. Вирхов внес в клеточную теорию важное дополнение. Он доказал, что число клеток в организме увеличивается в результате их деления, так как клетка происходит только от клетки.

    Открытие клеточного строения у живых организмов Ф. Энгельс отнес к числу трех важнейших открытий XIX столетия в области естествознания наряду с законом сохранения энергии и эволюционным учением Ч. Дарвина. Хотя клеточная теория не сразу получила всеобщее признание, тем не менее она явилась мощным стимулом интенсивного изучения клетки. Появились новые замечательные открытия. В 1877—1881 гг. Э. Руссов и И. Горожанкин впервые наблюдали и описали цитоплазматические соединения между растительными клетками — плазмодесмы. Позднее их формирование и структуру изучали немецкие ботаники Э. Страсбургер и Ю. Сакс. Таким образом были доказаны взаимосвязь клеток в тканях и органах и, следовательно, материальная основа целостности организма.

    Целая эпоха в развитии наших знаний о внутриклеточной структуре и физиологии клетки связана с открытием и изучением деления ядер — кариокинеза и деления клеток - цитокинеза (работы П. Чистякова, Э. Страсбургера, Л. Гиньяра и др.).

    Развитие наших знаний о клеточном строении основывалось на данных светового микроскопирования. Но разрешающая способность светового микроскопа ограничена. С помощью светового микроскопа нельзя рассматривать ультраструктуры клетки, измеряемые нанометрами (1 нм - 0,001 мкм). С открытием же электронного микроскопа, который позволяет увеличивать тонкие структуры клетки в 100 000 раз и больше, возможности изучения клетки резко возросли.

    Современные методы исследования позволяют учитывать взаимосвязь структуры и функции, т.е. изучать клетки в единстве с физиологией. Так, один из биохимических методов — хроматография — позволяет установить не только качественные, но и количественные соотношения внутриклеточных компонентов; метод фракционного центрифугирования — изучить отдельные компоненты клетки — ядро, пластиды, митохондрии, рибосомы и др.

    Современная клеточная теория включает следующие положения: клетка — основная единица строения и развития всех живых организмов, наименьшая единица живого; клетки всех одноклеточных и многоклеточных организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; размножаются клетки путем деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки; в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы.

    Значение клеточной теории заключается в том, что она доказывает единство происхождения всех живых организмов на Земле.

    2. ХИМИЧЕСКИЙ СОСТАВ КЛЕТКИ

    Сходство химического состава клеток всех организмов служит доказательством единства живой природы. Вместе с тем нет ни одного химического элемента, содержащегося в живых организмах, который не был бы найден в телах неживой природы. Это подтверждает мнение о единстве материи.

    Элементы, входящие в состав клетки, %



    Кислород — 65—75


    Магний — 0,02—0,03


    Цинк - 0,0003


    Углерод — 15—18


    Натрий — 0,02—0,03


    Медь — 0,0002


    Водород — 8—10


    Кальций — 0,04—2,00


    Йод — 0,0001


    Азот— 1,5—3,0


    Железо — 0,01—0,015


    Фтор — 0,0001




    Калий—0,15—0,40






    Сера — 0,15—0,20






    Фосфор — 0,20—1,00






    Хлор — 0,05—0,10





    В приведенном перечне кислород, углерод, водород и азот — группа элементов, которыми живые существа богаче всего. Вторая группа объединяет 8 элементов, представленных десятыми и сотыми долями процента. Их общая масса — около 1,9 %. В третью группу входят такие элементы, которых в живой клетке очень мало,— микроэлементы, но и они совершенно необходимы для ее нормального функционирования. В живых организмах все эти элементы входят в состав неорганических и органических соединений, которые и образуют живую материю. В основном клетки живых существ построены из органических веществ.

    В состав клеток входят и неорганические соединения. За исключением воды, они составляют незначительную долю по сравнению, с содержанием органических веществ.

    В то время как неорганические соединения существуют и в неживой природе, органические соединения характерны только для живых организмов. В этом существенное различие между живой и неживой природой.
    Соотношение в клетке воды, органических и неорганических веществ, %

    Вода... 70—85




    1—2


    Белки...10—20


    АТФ и другие низкомолекулярные органические вещества


    0,1—0,5

    Жиры... 1—5


    Неорганические вещества (кроме воды)


    1—1,5


    Углеводы...0,2—2,0







    Неорганические вещества. Большое значение в жизнедеятельности клетки имеет вода. Прежде всего она является растворителем, а все обменные процессы могут протекать лишь в растворах. Вода играет важную роль во многих реакциях, происходящих в организме, например в реакциях гидролиза, при которых высокомолекулярные органические вещества (белки, жиры, углеводы) расщепляются благодаря присоединению к ним воды. С помощью воды обеспечивается перенос необходимых веществ от одной части организма к другой. Чем выше биохимическая активность клетки или ткани, тем выше содержание в них воды. Велика ее роль и в теплорегуляции клетки и организма в целом. Другие неорганические вещества — соли — находятся в организмах в виде анионов и катионов в растворах и в виде соединений с органическими веществами. Важное функциональное значение для нормальной жизнедеятельности клетки имеют катионы К+, Na+, Ca2+, Ms2+ и анионы НР042-, H2PO4-, НСОз-, СI-.

    В соединении с органическими веществами особое значение имеют сера, входящая в состав многих белков, фосфор как обязательный компонент нуклеотидов ДНК и РНК, железо, находящееся в составе белка крови гемоглобина, и магний, содержащийся в молекуле хлорофилла. Кроме того, фосфор в форме нерастворимого фосфорнокислого кальция составляет основу костного скелета позвоночных и раковин моллюсков.

    Органические вещества. В составе клетки они представлены белками, углеводами, жирами, нуклеиновыми кислотами (ДНК и РНК) и аденозинтрифосфатом (АТФ).

    Белки. Это основная составная часть любой живой клетки. На их долю приходится 50—80 % сухой массы клетки. Химический состав белков чрезвычайно разнообразен, и в то же время все они построены по одному принципу. Белок—это полимер, молекула которого состоит из многих мономеров — молекул аминокислот. Всего известно-20 различных аминокислот, входящих в состав белков. Каждая из них имеет карбоксильную группу (СООН), аминогруппу (NH2) и радикал, которым одна аминокислота отличается от другой. В молекуле белка аминокислоты химически соединены прочной пептидной связью (—CO—NH—), в которой углерод карбоксильной группы одной аминокислоты соединяется с азотом аминогруппы последующей аминокислоты. При этом выделяется молекула воды. Соединение, состоящее из двух или большего числа аминокислотных остатков, называется полипептидом. Последовательность аминокислот в полипептидной цепи определяет первичную структуру молекулы белка.

    В молекуле того или иного белка одни аминокислоты могут многократно повторяться, а другие совсем отсутствовать. Общее число аминокислот, составляющих одну молекулу белка, иногда достигает нескольких сотен тысяч. В результате молекула белка представляет собой макромолекулу, т.е. молекулу с очень большой молекулярной массой.

    Химические и физиологические свойства белков определяются не только тем, какие аминокислоты входят в их состав, но и тем, какое место в длинной цепочке белковой молекулы занимает каждая из аминокислот. Так достигается огромное разнообразие первичной структуры белковой молекулы. В живой клетке белки имеют еще вторичную и третичную структуру. Вторичная структура белковой молекулы достигается ее спирализацией; длинная цепочка соединенных между собой аминокислот закручивается в спираль, между изгибами которой возникают более слабые водородные связи. Третичная структура определяется тем, что спирализованная молекула белка еще многократно и закономерно сворачивается, образуя компактный шарик, в котором звенья спирали соединяются еще более слабыми бисульфидными связями (-S—S—). Кроме того, в живой клетке могут быть и более сложные формы — четвертичная структура, когда несколько молекул белка объединяются в агрегаты постоянного состава (например, гемоглобин).

    Белки выполняют в клетке разнообразные функции. Функциональной активностью обладают белки с третичной структурной организацией, но в большинстве случаев только переход белков третичной организации в четвертичную структуру обеспечивает специфическую функцию.

    Ферментативная функция. Все биологические реакции в клетке протекают при участии особых биологических катализаторов — ферментов, а любой фермент — белок, ферменты локализованы во всех органеллах клеток и не только направляют ход различных реакций, но и ускоряют их в десятки и сотни тысяч раз. Каждый из ферментов строго специфичен. Так, распад крахмала и превращение его в сахар (глюкозу) вызывает фермент амилаза, тростниковый сахар расщепляет только фермент инвертаза и т.д. Многие ферменты давно уже применяют в медицинской, а также в пищевой (хлебопечение, пивоварение и др.). промышленности.

    Структурная функция. Белки входят в состав всех мембран, окружающих и пронизывающих клетку, и органелл. В соединении с ДНК белок составляет тело хромосом, а в соединении с РНК — тело рибосом. Растворы низкомолекулярных белков входят в состав жидких фракций клеток.

    Транспортная функция. Именно с белками связан перенос кислорода, а также гормонов в теле животных и человека (его осуществляет белок крови — гемоглобин).

    Двигательная функция. Все виды двигательных реакций клетки выполняются особыми сократительными белками, которые обусловливают сокращение мускулатуры, движение жгутиков и ресничек у простейших, перемещение хромосом при делении клетки, движение растений.

    Защитная функция. Многие белки образуют защитный покров, предохраняющий организм от вредных воздействий, например роговые образования — волосы, ногти, копыта, рога. Это механическая защита.

    В ответ на внедрение в организм чужеродных белков (антигенов) в клетках крови вырабатываются вещества белковой природы (антитела), которые обезвреживают их, предохраняя организм от повреждающего действия. Это иммунологическая защита.

    Энергетическая функция. Белки могут служить источником энергии. Расщепляясь до конечных продуктов распада — диоксида углерода, воды и азотсодержащих веществ, они выделяют энергию, необходимую для многих жизненных процессов в клетке.

    Углеводы. Это необходимый компонент любой клетки. В растительных клетках их значительно больше, чем в животных. Углеводы содержат только углерод, водород и кислород. К простейшим углеводам относятся простые сахара (модосахариды). Они содержат пять (пентозы) или шесть (гексозы) атомов углерода и столько же молекул воды. Примерами моносахаридов могут служить глюкоза и фруктоза, находящиеся во многих плодах растений. Кроме растений глюкоза входит также в состав крови.

    Сложные углеводы состоят из нескольких молекул простых углеводов. Из двух моносахаридов образуется дисахарид. Пищевой сахар (сахавоза), например, состоит из молекулы глюкозы и молекулы фруктозы. Значительно большее число молекул простых углеводов входит в такие сложные углеводы, как крахмал, гликоген, клетчатка (целлюлоза). В молекуле клетчатки, например, от 300 до 3000 молекул глюкозы.

    Углеводы своеобразное «топливо» для живой клетки;

    окисляясь, они высвобождают химическую энергию, которая расходуется клеткой на процессы жизнедеятельности. Углеводы выполняют и важные строительные функции, например у растений из них образуются стенки клеток.

    Жиры и липоиды. В качестве обязательного компонента содержатся в любой клетке. Жиры представляют собой соединение глицерина с различными жирными кислотами, липоиды — эфиры жирных кислот и спиртов, но не глицерина. Именно этим кислотам липоиды обязаны своим важным биологическим свойством — не растворяться в воде. Этим же определяется и их роль в биологических мембранах клетки. Средний, липидный, слой мембран препятствует свободному перемещению воды из клетки в клетку. Жиры используются клеткой как источник энергии. Подкожный жир играет важную теплоизоляционную роль.

    У животных, особенно у водных млекопитающих. У животных, впадающих

    зимой в спячку жиры обеспечивают организм необходимой энергией. Они составляют запас питательных веществ в сменах и плодах растений





    .

    Нуклеиновые кислоты. Впервые были обнаружены в ядрах клеток. Существует два типа нуклеиновых кислот: дезоксирибонук-леиновые (ДНК) и рибонуклеиновые (РНК), ДНК образуется и содержится преимущественно в ядре клетки,

    Рис. 1. Модель двойной спирали молекулы ДНК. А — участок двуспиральной молекулы ДНК; Б — схема участка деспирализованных цепей. Ясно видна комплементарность оснований, водородные связи между ними показаны точками

    РНК, возникая в ядре, выполняет свои функции в цитоплазме и ядре.

    Молекула ДНК — очень длинная двойная цепочка, спирально закрученная вокруг своей продольной оси (рис. 1). Длина ее во многие сотни раз превышает длину цепочки белковой молекулы. Каждая одинарная цепочка представляет собой полимер и состоит из отдельных соединенных между собой мономеров — нуклеотидов.

    В состав любого нуклеотида входят два постоянных химических компонента (фосфорная кислота и углевод дезоксирибоза) и один переменный, который может быть представлен одним из четырех азотистых оснований: аденином, гуанином, тимином или цитозином. Поэтому в молекулах ДНК всего четыре разных нуклеотида. Разнообразие же молекул ДНК огромно и достигается благодаря различной последовательности нуклеотидов в цепочке ДНК.

    Две цепи ДНК соединены в одну молекулу азотистыми основаниями. При этом аденин соединяется только с тимином, а гуанин - с цитозином. В связи с этим последовательность нуклеотидов в одной цепочке жестко определяет последовательность в другой цепочке. Строгое соответствие нуклеотидов друг другу в парных цепочках молекулы ДНК получило название комплементарности(рис. 1). Это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

    Редупликация сводится к тому, что под действием специального фермента исходная двойная цепочка молекулы ДНК постепенно распадается на две одинарные — и тут же к каждой из них по принципу химического сродства (аденин к тимину, гуанин к цитозину) присоединяются свободные нуклеотиды. Так восстанавливается двойная цепь ДНК. Но теперь таких двойных молекул уже две. Поэтому синтез ДНК и получил название редупликации(удвоения): каждая молекула ДНК как бы сама себя удваивает. Роль ДНК заключается в хранении, воспроизведении и передаче из поколения в поколение наследственной информации.

    Молекулярная структура РНК близка к таковой ДНК. Но есть и существенные различия. Молекула РНК — не двойная, а одинарная цепочка из нуклеотидов. В ее состав входят также четыре типа нуклеотидов, но один из них иной, чем в ДНК: вместо тимина в РНК содержится урацил. Кроме того, во всех нуклеотидах молекулы РНК находится не дезоксирибоза, а рибоза. Молекулы РНК не столь велики, как молекулы ДНК.

    В клетке имеется три вида РНК. Названия их связаны с выполняемыми функциями. Транспортные РНК (тРНК) — самые маленькие по размеру, транспортируют аминокислоты к месту синтеза белка. Информационные, или матричные, РНК (мРНК) во много раз больше тРНК. Они переносят информацию о структуре белка от ДНК к месту синтеза белка. Третий вид — рибосомальные РНК (рРНК) — входят в состав рибосом. Все виды РНК синтезируются в ядре клетки по тому же принципу комплементарности на одной из цепей ДНК. Значение РНК состоит в том, что они обеспечивают синтез в клетке специфических для нее белков.
      1   2   3


    написать администратору сайта