Презентация по геометрии в 10 классе на тему _Компланарные векто. Компланарные векторы. Правило параллелепипеда
Скачать 2.86 Mb.
|
Компланарные векторы. Правило параллелепипеда Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости. c Другими словами, векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости. a c Любые два вектора компланарны. Три вектора, среди которых имеются два коллинеарных, также компланарны. c a k Три произвольных вектора могут быть как компланарными, так и не компланарными. На рисунке изображен параллелепипед. А О Е D C Являются ли векторы ВВ1, ОD и ОЕ компланарными? В B1 Три произвольных вектора могут быть как компланарными, так и не компланарными. На рисунке изображен параллелепипед. А О Е D C В B1 Векторы ОА, ОВ и ОС не компланарны, так как вектор ОС не лежит в плоскости ОАВ. Являются ли векторы ОА, ОВ и ОС компланарными? B C A1 B1 C1 D1 Являются ли векторы AD, А1С1 и D1B компланарными? Векторы А1D1, A1C1 лежат в плоскости А1D1C1. Вектор D1В не лежит в этой плоскости. Векторы AD, А1С1 и D1B не компланарны. A D A B C A1 B1 C1 D1 D Являются ли векторы AD и D1B компланарными? Любые два вектора компланарны. №355 Дан параллелепипед АВСA1B1C1D1. Компланарны ли векторы? В А В1 С1 D1 D С А1 АА1, СС1, ВВ1 Три вектора, среди которых имеются два коллинеарных, компланарны. №355 Дан параллелепипед АВСA1B1C1D1. Компланарны ли векторы? В А В1 С1 D1 D С А1 АВ, АD, АА1 Векторы АВ, АD и АА1 не компланарны, так как вектор АА1 не лежит в плоскости АВС. №355 Дан параллелепипед АВСA1B1C1D1. Компланарны ли векторы? В А В1 С1 D1 D С А1 В1В, АС, DD1 Три вектора, среди которых имеются два коллинеарных, компланарны. №355 Дан параллелепипед АВСA1B1C1D1. Компланарны ли векторы? В А В1 С1 D1 D С А1 АD, CC1, А1B1 Векторы АВ, АD и АА1 не компланарны, так как вектор АА1 не лежит в плоскости АВС. АD, CC1, А1B1 Векторы не компланарны Любые два вектора компланарны. Три вектора, среди которых имеются два коллинеарных, также компланарны. Если вектор можно разложить по векторам и , т.е. представить в виде где x и y – некоторые числа, то векторы , и компланарны. c a b c = xa + yb a b c Признак компланарности c = xa + yb Докажем, что векторы компланарны. b О В В1 А1 А С ОВ1 = у ОВ ОА1 = х ОА Векторы ОА и ОВ лежат в одной плоскости ОАВ. Векторы ОА1 и ОВ1 также лежат плоскости ОАВ. А следовательно, и их сумма – вектор ОС = х ОА + у ОВ, равный вектору . c c a Если вектор можно разложить по векторам и , т.е. представить в виде где x и y – некоторые числа, то векторы , и компланарны. c a b c = xa + yb a b c Признак компланарности Справедливо и обратное утверждение. Если векторы , и компланарны, а векторы и не коллинеарны, то вектор можно разложить по векторам и , причем коэффициенты разложения определяются единственным образом. c a b c = xa + yb a b c a b Сложение векторов. Правило треугольника. a a b b a + b АВ + ВС = АС П О В Т О Р И М Сложение векторов. Правило параллелограмма. a a b b a + b b a + АВ + АD = АС А В D C П О В Т О Р И М Сложение векторов. Правило многоугольника. = АO АВ + ВС + СD + DO a c n m c m n a+c+m+n a П О В Т О Р И М A В С В1 D Е Правило параллелепипеда. a b c О OE + ED = (OA + AE) + ED = OA + OB + OC = = a + b + c OA + OB + OC = OD из OED из OAE OD = Теорема о разложении вектора по трем некомпланарным векорам. Любой вектор можно разложить по трем данным некомпланарным векторам, причем коэффициенты разложения определяются единственным образом. Разложение вектора по трем некомпланарным векторам. Если вектор представлен в виде где , и - некоторые числа, то говорят, что вектор разложен по векторам , и . Числа , и называются коэффициентами разложения. p = xa + yb + zc c x z p y b a x z y p = xa + yb + zc Докажем, что любой вектор можно представить в виде p b c a p C B P1 A P P2 a b c p O По правилу многоугольника ОР = ОР2 + Р2Р1 + Р1Р ОР2 = x OA Р2Р1= у OВ Р1Р = z OC ОР = x OA + y OB + z OC p = xa + yb + zc Если предположить, например, что , то из этого равенства можно найти Докажем теперь, что коэффициенты разложения определяются единственным образом. Допустим, что это не так и существует другое разложение вектора p = x1a + y1b + z1c p = xa + yb + zc – o = (x – x1)a + (y – y1)b + (z – z1)c Это равенство выполняется только тогда, когда o o o Тогда векторы компланарны. Это противоречит условию теоремы. Значит, наше предположение не верно, и Следовательно, коэффициенты разложения определяются единственным образом. D В A С B1 C1 D1 №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: АВ + АD + АА1 A1 = AC1 В A С C1 D1 D №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: DА + DC + DD1 A1 = DB1 B1 В A С C1 D1 D №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: A1 = DB1 B1 A1B1 + C1B1 + BB1 DC + DD1 + DA В A С C1 D1 D №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: A1 = A1C B1 A1A + A1D1 + AB + A1B1 A1A + A1D1 В A С C1 D1 D №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: A1 = BD1 B1 B1A1 + BB1 + BC BA + BB1 + BC В A С C1 D1 D №359 Дан параллелепипед АВСA1B1C1D1. Разложите вектор BD1 по векторам BA, ВС и ВВ1. A1 B1 ВD1 = BA + BC + BB1 По правилу параллелепипеда В A С C1 D1 D №359 Дан параллелепипед АВСA1B1C1D1. Разложите вектор B1D1 по векторам А1A, А1В и А1D1. A1 B1 В1D1 = B1A1+ А1D1 По правилу треугольника из А1В1D1: из А1В1B = (В1B + BA1)+ А1D1 = = (A1A – A1B)+ А1D1 = = = A1A – A1B+ А1D1 Правило параллелепипеда a Пусть даны некоторые некомпланарные векторы c a , b, c b Правило параллелепипеда С Отложим от некоторой точки О пространства векторы ОА=a , ОВ=b, ОС=c и построим паралле- c лепипед так, чтобы В отрезки ОА,ОВ,ОС были его рёбрами. О А b a Правило параллелепипеда D С Диагональ OD этого параллелепипеда изобра- жает сумму векторов a , b , и c c О А b a Правило параллелепипеда D С OD=a + b +c . Действительно, OD=OE + ED=(OA +AE)+ + ED= OA+ 0B + OC =
О А Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: а) АВ+ВD+DC Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: а) АВ+ВD+DC A D B C Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: а) АВ+ВD+DC A Решение. AB+BD= AD, AD+DC=AC D Ответ: АС B C Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: б) АD+CВ+DC Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: б) АD+CВ+DC A D B C Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: б) АD+CВ+DC A Решение. AD+DC= AC, AC+CB=AB D Ответ: АB B C Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: в) АB+CD+BC+DA Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: в) АB+CD+BC+DA A D B C Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: в) АB+CD+BC+DA A Решение. AB+BC= AC, AC+CD=AD, AD+DA=0 D Ответ: 0 B C Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : а) AB+AD+A А1 Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : а) AB+AD+A А1 B1 С1 А1 D1 B С А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : а) AB+AD+A А1 B1 С1 А1 D1 Решение AB+AD = АС АС + A А1 = АС1 B С Ответ : АС1 А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : б) DA+DC+D D1 Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : б) DA+DC+D D1 B1 С1 А1 D1 B С А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : б) DA+DC+D D1 B1 С1 А1 D1 Решение DA+DC = DB DB + DD1 = DB1 B С Ответ : DB1 А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) А1B1+С1B1 +ВВ1 Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) А1B1+С1B1 +ВВ1 B1 С1 А1 D1 B С А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) А1B1+С1B1 +ВВ1 B1 С1 А1 D1 Решение А1B1+С1B1= D1 А1+ А1B1 = D1В1 D1В1 + ВВ1 = DВ + ВВ1 = DB1 B С Ответ : DB1 А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : г) A1 A+A1D1 +AВ Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : г) А1А+A1D1 +AВ B1 С1 А1 D1 B С А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : г) А1А+A1D1 +AВ B1 С1 А1 D1 Решение А1A+A1D1= A1D1+ D1D = A1D A1D + AВ = A1D + DC = A1C B С Ответ : A1C А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) B1A1+BB1 +ВC Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : д) B1А 1 +BB1 +BC B1 С1 А1 D1 B С А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : д) B1А 1 +BB1 +BC B1 С1 А1 D1 Решение B1A 1 +BB1= BA1 BA1 + ВC = BA1 + A1D 1 = BD1 B С Ответ : BD1 А D Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) B1A1+BB1 +ВC Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : а) АB +B1C1 +DD1+CD B1 С1 А1 D1 B С А D Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : а) АB +B1C1 +DD1+CD B1 С1 А1 D1 Решение AB+B1C1 = AB+BC = AC AC + CD + DD1 = AD1 B С Ответ : AD1 А D Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : б) B1C1 + АB + DD1+CB1+ BC + AA1 B1 С1 А1 D1 B С А D Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : б) B1C1 + АB + DD1+CB1+ BC + AA1 B1 С1 А1 D1 Решение AB+B1C1 = AB+BC = AC AC + CB1 = AB1 BC + AA1 = BA1 ; AB1 + BA1 = AC1 B С Ответ : AС1 А D Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : в) BА + АC + CB+DC + DA B1 С1 А1 D1 B С А D Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : в) BА + АC + CB+DC + DA B1 С1 А1 D1 Решение DC+DA+BA+AC + CB = DB B С Ответ : DB А D Решение задач № 384 Точки А1, B1, С1 – середины сторон ВС, АС и АВ треугольника АВС, точка О- произвольная точка пространства. Докажите , что ОА1+ОВ1+ОС1=ОА+ОВ+ОС Решение задач № 384 Точки А1, B1, С1 – середины сторон ВС, АС и АВ треугольника АВС, точка О- произвольная точка пространства. Докажите , что ОА1 +ОВ1+ОС1=ОА+ОВ+ОС В С1 А1 А В1 С Решение задач № 384 Точки А1, B1, С1 – середины сторон ВС, АС и АВ треугольника АВС, точка О- произвольная точка пространства. Докажите , что ОА1 +ОВ1+ОС1=ОА+ОВ+ОС В Доказательство ОС+СА1 =ОА1 ; ОА1 +А1В=ОВ; СА1+А1В=1/2СВ, значит ОС - ОА1=ОА1-ОВ отсюда следует, что ОС+ОВ=2ОА1 Аналогично, ОС+ОА=2ОВ1 и ОВ+ОА=2ОС1 С1 А1 Складывая почленно три полученные равенства, получим равенство, которое необходимо доказать. А В1 С |