Главная страница
Навигация по странице:

  • 2.1. Углеводородные соединения

  • Алканы или п

  • Химический состав газов различных месторождений

  • алканы нор

  • Таблица 2.2. Геометрические размеры свободных молекул н-алканов

  • Циклоалканы

  • Арены

  • Химия нефти и газа лекции. Концпект лекций химия нефти и газа


    Скачать 1.25 Mb.
    НазваниеКонцпект лекций химия нефти и газа
    Дата10.04.2023
    Размер1.25 Mb.
    Формат файлаdoc
    Имя файлаХимия нефти и газа лекции.doc
    ТипРеферат
    #1051416
    страница4 из 11
    1   2   3   4   5   6   7   8   9   10   11

    сера в количестве от 0,1 до 1-2 % (иногда ее содержание может доходить до 5-7 %, во многих нефтях серы практически нет);

    азот в количестве от 0,001 до 1 (иногда до 1,7 %);

    кислород (встречается не в чистом виде, а в различных соединениях) в количестве от 0,01 до 1 % и более, но не превышает 3,6 %.

    Из других элементов в нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %.

    В вещественном плане нефть в основном состоит из углеводородов и гетероорганических соединений. Среди последних основное внимание следует обратить на смолоасфальтеновые вещества (CAB), которые можно рассматривать как концентрат наиболее склонных к межмолекулярным взаимодействиям соединений.
    2.1. Углеводородные соединения
    Углеводороды (УВ) представляют собой органические соединения углерода и водорода. В нефти в основном содержатся следующие классы углеводородов.

    Алканы или парафиновые углеводороды – насыщенные (предельные) УВ с общей формулой CnH2n+2. Содержание их в нефти составляет 2 - 30-70 %. Различают алканы нормального строения (н-алканы - пентан и его гомологи), изостроения (изоалканы - изопентан и др.) и изопреноидного строения (изопрены – пристан, фитан и др.)

    В нефти присутствуют газообразные алканы от С1 до С4 (в виде растворённого газа), жидкие алканы С5 – С16, составляют основную массу жидких фракций нефти и твёрдые алканы состава С17 – С53 и более, которые входят в тяжёлые нефтяные фракции и известны как твёдые парафины. Твёрдые алканы присутствуют во всех нефтях, но обычно в небольших количествах - от десятых долей до 5 % (масс.), в редких случаях - до 7-12 % (масс.). В Томской области нефть Чкаловского месторождения содержит до 18 % твердых парафинов.

    В зависимости от внутрипластовых условий и компонентного состава пластовой залежи определяется тип месторождения - газовое, газоконденсатное или нефтяное. Основные компоненты чисто газовых месторождений - низкомолекулярные алканы - метан, этан, пропан и бутан (н- и изостроения) в индивидуальном виде при нормальных условиях (0,1 МПа и 20°С) являются газами. В нефтяных природных газах доминируют алканы.

    Кроме алканов в состав природных газов могут входить оксид (СО) и диоксид углерода (СО2), сероводород (Н2S), азот (N2), а также инертные газы - Не, Аг, Ne, Xe. В чисто газовых залежах почти полностью отсутствует конденсат (Табл. 2.1).

    Если при изотермическом снижении давления в пласте тяжелые компоненты природного газа выделяются в виде жидкой фазы (конденсата), то такие смеси называют газоконденсатными. При этом часть конденсата может безвозвратно теряться в породе. Содержание конденсата (С5 и высшие) в газе зависит от его состава и пластовых условий (температуры и давления, достигающее 25-40 МПа).

    Количественным критерием отнесения залежи к газоконденсатным месторождениям служит газоконденсатный фактор, равный количеству газа 3) при нормальных условиях, в котором растворен 1 м3 конденсата при пластовых условиях. Залежи, газоконденсатный фактор которых не превышает 104, обычно относят к газоконденсатным.

    Таблица 2.1.

    Химический состав газов различных месторождений

    Объемное содержание компонентов, % (об.)

    Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 СО2 другие компоненты

    Чисто газовые месторождения

    Уренгойское 95,1 1,1 0,3 0,07 0,03 0,4 3,0

    Медвежье 98,3 0,3 0,1 0,15 - 0,1 1,0

    Саратовское 94,7 1,8 0,2 0,1 - 0,2 3,0

    Газоконденсатные месторождения

    Оренбургское 84,8 4,5 1,4 0,3 1,5 1,15 9,0

    Вуктыльское 79,8 8,7 3,9 1,8 6,4 0,1 4,3

    Ленинградское 86,9 6,0 1,6 1,0 0,5 1,2 2,8

    Попутные газы газонефтяных месторождений

    Ромашкинское 39,0 20,0 18,5 6,2 4,7 0,1 11,5

    Небит-Дагское 85,7 4,0 3,5 2,0 1,4 2,1 1,3

    Мухановское 30,1 20,2 23,6 10,6 4,8 1,5 9,2
    Нефть в пласте также содержит газ. Количество растворенного газа в нефти характеризуется величиной "газосодержание" (Го). Газосодержание для пластовых нефтей колеблется от долей единицы до нескольких сотен м3/т. Попутные нефтяные газы при подъеме нефти на поверхность выделяются из нее, пока давление насыщения (Рнас) превышает атмосферное давление. В промысловой практике товарной нефтью считают ту часть пластовой нефти, которая остается в жидком состоянии после сепарации добываемой смеси (и отделения воды) и приведения ее к стандартным (или н.у.) условиям. Содержание в ней газов составляет менее 1 %.

    Из нефти и природных газов выделены все алканы нормального строения, начиная от метана до гексатриаконтана СН74, однако имеются сведения, что н-алканы в нефтях образуют непрерывный гомологический ряд, простирающийся вплоть до С6568 а по другим данным — и до С78.

    Как правило, максимум объемного содержания н-алканов в нефтях приходится на н-гексан (1,8 %) и н-гептан (2,3 %), а затем содержание постепенно снижается, достигая 0,09 % для тритриаконтана С33Н68.

    По другим данным практически для всех глубоко превращенных нефтей характерен унимодальный вид кривых распределения н-алканов с максимумом С1014 и с равномерным снижением концентраций высокомолекулярных н-алканов (по Петрову Ал.А.). Наблюдается тенденция к снижению содержания н-алканов с ростом температуры выкипания фракций.

    В нефти присутствовать всевозможные изомеры алканов: моно-, ди-, три - , тетразамещенные. Из них превалируют в основном монозамещенные, с одним разветвлением. Метилзамещенные алканы по степени убывания располагаются в ряд: 2-метилзамещенные алканы > 3-метилзамещенные алканы > 4-метил-замещенные алканы.

    К 60-м годам относится открытие в нефтях разветвленных алканов изопреноидного типа с метальными группами в положениях 2, 6, 10, 14, 18 и т. д. Обнаружено более двадцати таких УВ в основном состава С920. Наиболее распространенными изопреноидными алканами в любых нефтях являются фитан С20Н42 и пристан С19Н40, содержание которых может доходтить до 1,0 -1,5 % и зависит от генезиса и фациальной обстановки формирования нефтей.

    Таким образом, алканы в различных пропорциях входят в состав всех природных смесей и нефтепродуктов, а их физическое состояние в смеси - в виде молекулярного раствора или дисперсной системы - определяется составом, индивидуальны­ми физическими свойствами компонентов и термобарическими условиями.

    В составе нефтей твёрдые УВ - это многокомпонентные смеси, где наряду с алканами содержатся ароматические и нафтеновые углеводороды. Так, твердые углеводороды, выделенные из дистиллятной фракции (300-400°С) туймазинской нефти, состоят из 50 % н-алканов, 47,1 % нафтеновых УВ с боковыми цепями нормального строения и 2,9 % ароматических УВ с боковыми цепями нормального строения. По мере повышения температур выкипания фракций одной и той же нефти содержание твердых алканов уменьшается.

    Атомы углерода в молекуле алкана связаны посредством ковалентной σ-связи с постоянной (для свободных изолированных молекул в газовой фазе) длиной связи С-С, равной 0,154 нм, и валентным углом между С-С-связями, равным 112°. Молеку­лярные параметры н-алканов в газовой фазе несколько изменяются по мере роста числа атомов углерода в молекуле (табл. 2.2).

    Таблица 2.2.

    Геометрические размеры свободных молекул н-алканов


    н-Алкан

    Длина связи С-С, нм

    Длина связи С-Н, нм

    Угол ССС, град

    угол ССН, град

    СН4 - 0,1107

    С2Н6 0,1534 0,1122 - 111,0

    С3Н8 0,1532 0,1107 112,0

    С4Ню 0,1531 0,1107 112,0 110,3

    С5Н12 0,1531 0,1118 112,9 110,4

    С6НН 0,1533 0,1118 111,9 109,5

    С7Н16 0,1534 0,1121 112,6 109,8

    С16Н34 0,1542 0,1130 114,6 110,4
    По мнению М. Шахпаронова, обнаруживаемые различия обусловлены разрушением энергетически "невыгодных" и образованием "выгодных" внутримолекулярных водородных связей типа С-Н-С.

    В то же время известно, что силы кристаллического поля могут существенно изменять конформацию и молекулярные параметры в результате образования межмолекулярных водородных связей. В конденсированных средах значения таких молекулярных параметров, как барьеры внутреннего вращения, разность энтальпий конформеров, межъядерные расстояния и валентные углы, должны отличаться от наблюдаемых для свободных молекул. В настоящее время различие геометрического строения молекул н-алканов в свободном и конденсированном состояниях еще мало изучено.

    В рамках структурно-механического подхода н-алканы классифицируют по способности их молекул к независимой поворотной изомерии концевых метильных групп. Согласно этой классификации, начиная с алканов С89, различают ко-роткоцепные (С817), среднецепные (С1840) и длинноцепные (С40100) молекулы н-алканов, которые рассматривают как сложные системы с относительно некоррелированными движениями срединных и концевых групп. Знание критической длины цепи молекулы, в целом теряющей кинетическую подвижность по достижении определенной температуры в условиях предкристаллизации при переохлаждении, позволяет рассматривать молекулу как состоящую из независимых фрагментов.

    Дисперсионное взаимодействие между молекулами н-алканов при структурно-механическом подходе определяется числом центров дисперсионного взаимодействия, достигающим в точках кристаллизации предельного значения. В рамках таких представлений получает объяснение давно известный факт альтернирования температур кристаллизации четных и нечетных н-алканов по мере роста числа углеродных (п) атомов (рис. 2.1).



    Рис. 2.1. Зависимость разности температур ∆Т кипения (1) и кристаллизации (2) для соседних членов ряда н-алканов от числа п углеродных атомов

    Для нечетных изомеров н-алканов при п < 20 в результате расклини­вающего влияния концевых СН3-групп наблюдается уменьше­ние числа центров дисперсионного взаимодействия в точках кристаллизации, что приводит к понижению температур кристаллизации. Для газообразных УВ, т.е., п < 4 ∆Т не определялись.

    В кристаллическом состоянии молекулы н-алканов располагаются параллельно. С повышением температуры и уменьшением энергии межмолекулярного взаимодействия расстояния между молекулярными цепями н-алканов увеличиваются, при этом сохраняется предпочтительная параллельная ориентация. В точке плавления расстояния между молекулярными цепями изменяются скачкообразно, при дальнейшем повышении температуры происходит активное раздвижение молекулярных цепей до тех пор, пока молекулы не обретут полную свободу вращения. Структурные исследования жидких н-алканов показывают, что при фиксированной температуре равновесное расстояние (0,56 нм) между ближайшими молекулами н-алканов по мере роста п обнаруживает тенденцию к укорочению, что связано с усилением межмолекулярных взаимодействий.

    Алканы в нефтяных системах могут находиться в молекулярном или ассоциированном состояниях. Исследование методом малоуглового рассеяния рентгеновских лучей молекулярной структуры н-алканов в жидком состоянии показало, что их ассоциация происходит по поверхности молекул с помощью сил дисперсионного взаимодействия, а ассоциаты, например н-гептана, при нормальных условиях имеют форму дисков или пластин с размерами 130-200 Ả.

    Число молекул в ассоциате тем больше, чем ниже температура. Так, в гексадекане при 20°С (т. е. на 2°С выше температуры кристаллизации) число молекул в ассоциате равно 3, а в н-октане при -50°С (т. е. на 6°С выше температуры кристаллизации) - 31. Это объясняется ослаблением теплового движения молекул и усилением энергии молекулярного взаимодействия алканов с ростом длины цепи.

    Циклоалканы или нафтеновые углеводороды – насыщенные алициклические УВ. К ним относятся моноциклические с общей формулой CnH2n, бициклические – CnH2n-2, трициклические – CnH2n-4, тетрациклические – CnH2n-6.

    По суммарному содержанию циклоалканы во многих нефтях преобладают над другими классами УВ: их содержание колеблется от 25 до 75 % (масс.). Они присутствуют во всех нефтяных фракциях. Обычно их содержание растет по мере утяжеления фракций. Общее содержание нафтеновых углеводородов в нефти растёт по мере увеличения ее молекулярной массы. Исключение составляют лишь масляные фракции, в которых содержание циклоалканов падает за счет увеличения количества ароматических углеводородов.

    Из моноциклических УВ в нефти присутствуют в основном пяти- и шестичленные ряды нафтеновых УВ. Распределение моноциклических нафтенов по нефтяным фракциям, их свойства изучены гораздо более полно по сравнению с полициклическими нафтенами, присутствующими в средне- и высококипящих фракциях. В низкокипящих бензиновых фракциях нефтей содержатся преимущественно алкилпроизводные циклопентана и циклогексана [от 10 до 86 % (маесс)], а в высококипящих фракциях - полициклоалканы и моноциклоалканы с алкильными заместителями изопреноидного строения (т.н. гибридные УВ).

    Из полициклических нафтенов в нефтях идентифицировано только 25 индивидуальных бициклических, пять трициклических и четыре тетра- и пентациклических нафтена. Если в молекуле несколько нафтеновых колец, то последние, как правило, сконденсированы в единый полициклический блок.

    Бицикланы С79 чаще всего присутствуют в нефтях ярко выраженного нафтенового типа, в которых их содержание достаточно высоко. Среди этих углеводородов обнаружены (в порядке убывания содержания): бицикле[3,3,0]октан (пенталан), бицикло[3,2,1]октан, бицикло[2,2,2]октан, бицикло[4,3,0]нонан (гидриндан), бицикло[2,2,1]гептан (норборнан) и их ближайшие гомологи. Из трицикланов в нефтях доминируют алкилпергидрофенантрены, среди которых идентифицированы соединения типа (1-4): R = С1, С2; R =С13; R = С2—С4.



    Тетрацикланы нефти представлены главным образом производными циклопентанопергидрофенантрена - стеранами С2730 (5-7):



    К пентацикланам нефтей относятся углеводороды ряда гопана (8), лупана (9), фриделана (10) и др.



    Достоверных сведений об идентификации полициклоалканов с большим количеством циклов нет, хотя на основе структурно-группового и масс-спектрального анализа можно высказать предположения о присутствии нафтенов с числом циклов, большим пяти. По некоторым данным, высококипящие нафтены содержат в молекулах до 7-8 циклов.

    Различия в химическом поведении циклоалканов часто обусловлены наличием избыточной энергии напряжения. В зависимости от размеров цикла циклоалканы подразделяют на малые (С3, С4 - хотя циклопропан и циклобутан в нефтях не обнаружены), нормальные (С57), средние (C811) и макроциклы (от C12 и более). В основе этой классификации лежит зависимость между размером цикла и возникающими в нем напряжениями, влияющими на стабильность. Для циклоалканов и, прежде всего, для их различных производных, характерны перегруппировки с изменением размеров цикла. Так, при нагревании циклогептана с хлоридом алюминия образуется метилциклогексан, а циклогексан при 30-80°С превращается в метилциклопентан. Пяти- и шестичленные углеродные циклы образуются гораздо легче, чем меньшие и большие циклы. Поэтому в нефтях встречается гораздо больше производных циклогексана и циклопентана, чем производных других циклоалканов.

    На основе исследования вязкостно-температурных свойств алкилзамещенных моноциклогексанов в широком интервале температур выяснено, что заместитель по мере его удлинения уменьшает среднюю степень ассоциации молекул. Циклоалканы, в отличие от н-алканов с таким же числом углеродных атомов, находятся в ассоциированном состоянии при более высокой температуре.

    Арены или ароматические углеводороды - соединения, в молекулах которых присутствуют циклические углеводороды с π–сопряжёнными системами. Содержание их в нефти изменяется от 10-15 до 50 %(масс.). К ним относятся представители моноциклических: бензол и его гомологи (толуол, о-, м-, п-ксилол и др.), бициклические: нафталин и его гомологи, трициклические: фенантрен, антрацен и их гомологи, тетрациклические: пирен и его гомологи и другие.

    На основе обобщения данных по 400 нефтям показано, что наибольшие концентрации аренов (37 %) характерны для нефтей нафтенового основания (типа), а наименьшие (20 %) - для нефтей парафинового типа. Среди нефтяных аренов преобладают сое­динения, содержащие не более трех бензольных циклов в моле­куле. Концентрации аренов в дистиллятах, кипящих до 500°С, как правило, снижаются на один-два порядка в следующем ряду соединений: бензолы >> нафталины >> фенантрены >> хризены >> пирены >> антрацены.

    Ниже представлено среднее содержание аренов, характерное для нефтей России различных типов, от общего содержания аренов, в %:

    бензольные 67 пиреновые 2

    нафталиновые 18 антраценовые 1

    фенантреновые 8 прочие арены 1

    хризеновые и бензфлуореновые 3

    Общей закономерностью является рост содержания аренов с повышением температуры кипения. При этом арены высших фракций нефти характеризуются не большим числом ароматических колец, а наличием алкильных цепей и насыщенных циклов в молекулах. В бензиновых фракциях обнаружены все теоретически возможные гомологи аренов C6-C9. Углеводороды с малым числом бензольных колец доминируют среди аренов даже в самых тяжелых нефтяных фракциях. Так, по экспериментальным данныммоно-, би-, три-, тетра- и пентаарены составляют соответственно 45-58, 24-29, 15-31, 1,5 и до 0,1 % от массы ароматических углеводородов в дистиллятах 370-535°С различных нефтей.

    Моноарены нефтей представлены алкилбензолами. Важнейшими представителями высококипящих нефтяных алкилбензолов являются УВ, содержащие в бензольном ядре до трех метильных и один длинный заместитель линейного, α-метилалкильного или изопреноидного строения. Крупные алкильные заместители в молекулах алкилбензолов могут содержать более 30 углеродных атомов.

    Главное место среди нефтяных аренов бициклического строения (диарены) принадлежит прозводным нафталина, которые могут составлять до 95 % от сум­мы диаренов и содержать до 8 насыщенных колец в молекуле, а второстепенное - производным дифенила и дифенилалканов. В нефтях идентифицированы все индивидуальные алкилнафталины С11, С12 и многие изомеры С13-C15. Содержание дифенилов в нефтях на порядок ниже содержания нафталинов.

    Из нафтенодиаренов в нефтях обнаружены аценафтен, флуорен и ряд его гомологов, содержащих метальные заместители в положениях 1-4.

    Триарены представлены в нефтях производными фенантрена и антрацена (с резким преобладанием первых), которые могут содержать в молекулах до 4-5 насыщенных циклов.

    Нефтяные тетраарены включают углеводороды рядов хризена, пирена, 2,3- и 3,4-бензофенантрена и трифенилена.

    Содержание в нефтях полиаренов с пятью и большим чис­лом конденсированных бензольных циклов очень невелико. Из таких углеводородов в тяжелых нефтяных фракциях обнаружены: 1,2- и 3,4-бензопирены, перилен, 1,2,5,6-дибензоантрацен, 1,1,2-бензоперилен и коронен.

    Арены нефти, выкипающие выше 500°С и представленные углеводородами C20-C75, распределяются по фракциям в соответствии с данными (табл. 2.3) до 39 атомов углерода в боковых алкильных цепях. Бициклические углеводороды с двумя бензольными и до трех нафтеновых колец выходят в этой же фракции при наличии 22-40 атомов углерода в боковых алкильных цепях. Элюирование трицикли-ческих углеводородов с тремя бензольными и двумя нафтеновыми кольцами во фракции легких аренов возможно при наличии 31-48 атомов углерода в боковых алкильных цепях. В состав средних и тяжелых ароматических фракций входят арены с более короткими боковыми цепями. Моноциклические и бициклические арены, имеющие в боковых цепях 10-20 атомов углерода, и трициклические с 16-30 атомами углерода в боковых цепях выходят в составе средней фракции аренов. Арены с еще более короткими боковыми цепями элюируются в составе тяжелой фракции аренов.

    Повышенная склонность аренов, особенно полициклических, к молекулярным взаимодействиям обусловлена низкой энергией возбуждения в процессе гомолитической диссоциации. Для соединений типа антрацена, пирена, хризена и т. п. характерна низкая степень обменной корреляции π–орбиталей и повышенная потенциальная энергия ММВ из-за возникновения обменной корреляции электронов между молекулами. С некоторыми полярными соединениями арены образуют достаточно устойчивые молекулярные комплексы.

    Взаимодействие π–электронов в бензольном ядре приводит к сопряжению углерод-углеродных связей. Следствием эффекта сопряжения являются следующие свойства аренов:

    - плоское строение цикла с длиной С-С-связи (0,139 нм), занимающей промежуточное значение между простой и двойной С-С-связью;

    - эквивалентность всех С-С-связей в незамещенных бензолах;

    - склонность к реакциям электрофильного замещения протона на различные группы по сравнению с участием в реакциях присоединения по кратным связям.
    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта