Главная страница
Навигация по странице:

  • 4.4. Газосодержание нефтей

  • 4.5. Давление насыщения нефти газом Давление, при котором весь газ растворяется в жидкости (т.е. переходит в жидкое состояние), называется давлением насыщения

  • Давлением насыщения

  • 4.7. О бъёмный коэффициент нефти С количеством растворённого газа в нефти также связан объёмный коэффициент b

  • 4.8. Тепловые свойства нефтей

  • Теплопроводность нефтей

  • 4.9. Электрические свойства нефтей

  • Концпект лекций химия нефти и газа


    Скачать 0.79 Mb.
    НазваниеКонцпект лекций химия нефти и газа
    Дата17.03.2022
    Размер0.79 Mb.
    Формат файлаdocx
    Имя файла000825a4-25f8bf76.docx
    ТипРеферат
    #401605
    страница8 из 10
    1   2   3   4   5   6   7   8   9   10

    4.3. Реологические свойства нефтий
    Вязкость влияет на реологические свойства нефтей.

    Реология – наука, изучающая механическое поведение твердо-жидкообразных тел, структурно–механические свойства нефтей.

    В уравнении 3.7 координату скорости (dv) можно представить как dx /dt, где x - длина пути в направлении скорости движения v, а t – время. Величина dx/dy характеризует сдвиг (γ) слоев, деформацию. Соотношение F/A – есть величина касательного напряжения (τ), развиваемое в движущихся слоях жидкости. Тогда, для ньютоновских жидкостей уравнение Ньютона можно записать:

    dγ/dt = τ/μ. (4.9)

    Уравнение 4.9, описывающее связь между касательным напряжением (τ) и скоростью сдвига (dγ/dt), называется реологическим.

    У ньютоновских жидкостей скорость сдвига пропорциональна касательному напряжению (давлению) и обратно пропорциональна вязкости жидкости (рис. 4.5). По аналогии с законом Гука: упругое поведение характеризуется пропорциональностью между напряжением и деформацией сдвига.

    Вязкость ньютоновской жидкости (μ) зависит только от температуры, давления.


    Рис. 4.5. Схема сдвига слоев жидкости


    Вязкость неньютоновской жидкости (μ) зависит от температуры, давления, скорости деформации сдвига и времени нахождения в спокойном состоянии.

    Реологические характеристики нефтей в значительной степени определяются содержанием в них смол, асфальтенов и твердого парафина.

    Вязкопластичное течение жидкости описывается уравнением Бингама:
    τ = τо + μ* (d γ/dt), (4.10)

    где τо – динамическое напряжение сдвига;

    μ* – кажущаяся вязкость пластичных жидкостей, равная угловому коэффициенту линейной части зависимости dγ/dt = ƒ(τ).

    Движение вязкопластичных нефтей аппроксимируется степенным законом зависимости касательного напряжения (τ) от модуля скорости деформации (dγ/dt):

    τ = К(dγ/dt)n, (4.11)
    где К – мера консистенции жидкости;

    n – показатель функции.

    С увеличением вязкости величина консистенции жидкости возрастает. Линии консистентности для различных типов реологически стационарных неньютоновских жидкостей приведены на рис. 4.6.

    При n = 1, уравнение 4.11 описывает течение ньютоновских жидкостей (рис. 4.6., кривая 3), проявляющие упругие свойства. К ньютоновским жидкостям относятся, растворы индивидуальных углеводородов, смеси углеводородов до С17, газоконденсатные системы, легкие нефти, молекулярные растворы.

    При n < 1 поведение нефти соответствуют псевдопластикам (кривая 2) – упруго-пластичной жидкости. Примером могут служить нефти, компоненты которых склонны к образованию надмолекулярных структур, высокопарафинистые дегазированные нефти, высокополимерные буровые растворы и др.

    При n > 1 поведение нефти соответствует дилатантной жидкости (кривая 4) – вязко-пластические жидкости. Примером могут служить буровые растворы, водные растворы полимеров для повышения нефтеотдачи, представляющие собой высокомолекулярные соединения со сложным строением молекул и др.

    Р еологическая кривая 1 (рис. 4.6) относится к бингамовским пластикам – пластическая жидкость.

    Рис. 4.6. Виды линий консистентности: 1. – бингамовские пластики; 2. – псевдопластики; 3. – ньютоновские жидкости; 4. – дилатантные жидкости
    В состоянии равновесия нефтяная система ведет себя как пластическая жидкость и обладает некоторой пространственной структурой, способной сопротивляться сдвигающему напряжению (τ), пока величина его не превысит значение статического напряжения сдвига (τо). После достижения некоторой скорости сдвига, нефть способна течь как ньютоновская жидкость. Примером пластической жидкости могут служить нефти с высоким содержанием парафина при температурах ниже температуры кристаллизации, аномально-вязкие нефти, с высоким содержанием асфальтенов, структурированные коллоидные системы, используемые для повышения нефтеотдачи пласта.
    4.4. Газосодержание нефтей
    От количества растворенного в нефти газа зависят многие ее свойства: плотность, вязкость и др. Свойства нефти в пластовых условиях будут существенно изменяться за счет растворения в ней нефтяного газа (Го):
    Свойства нефти = f (Го), Го = f (Тпл, Рпл, Рнас). (4.12)
    Количество, которого зависит от пластовых температур (Тпл), давлений (Рпл) и от давления насыщения газонефтяных залежей.

    Этот показатель в технологическом смысле называют газовым фактором:

    Го = Vг/Vн, (4.13)
    где Vг – объём выделившегося газа из объёма нефти (Vн) при н.у.

    Соотношение (4.13) описывает величину полного газосодержания (Го). Величина газового фактора (Го) характеризует количество газа (в м3), содержащееся в 1 тонне нефти (в м3). Различают газовый фактор объёмный [м33] и весовой [м3/т]. Величина его определяет запасы попутного газа нефтяной залежи. Газовый фактор определяют по результатам разгазирования глубинных проб нефти.

    В газонефтяных залежах может на 1 м3 нефти содержаться до 1000 м3 газа. Для газоконденсатных залежей на 1 м3 конденсата может приходиться до 900-1100 м3 газа (газоконденсатный фактор).

    По данным Требина Г.Ф. около 50 % залежей из 1200 имеют газовый фактор от 25 до 82 м33. То есть в 1 м3 нефти в пластовых условиях растворено от 25 до 82 м3 газа.

    Для нефтяных месторождений Западной Сибири величина газового фактора изменяется в диапазоне от 35 до 100 м33, для нефтегазовых залежей величина газового фактора может доходить до 250 м33.
    4.5. Давление насыщения нефти газом
    Давление, при котором весь газ растворяется в жидкости (т.е. переходит в жидкое состояние), называется давлением насыщения нефти газом.

    Если пластовое давление меньше давления насыщения, то часть газа находится в свободном состоянии, залежь имеет "газовую" шапку. Если пластовое давление больше давления насыщения, то говорят, что нефть "недонасыщена" газом и весь газ растворён в нефти. Давление насыщения может соответствовать пластовому давлению, при этом нефть будет полностью насыщена газом.

    Давлением насыщения пластовой нефти называют максимальное давление, при котором газ начинает выделяться из нефти при изотермическом ее расширении в условиях термодинамического равновесия. Давление насыщения зависит от соотношения объёмов нефти и растворенного газа, их состава и пластовой температуры. С увеличением молекулярной массы нефти (плотности) этот параметр увеличивается, при всех прочих равных условиях. С увеличением в составе газа количества компонентов, относительно плохо растворимых в нефти, давление насыщения увеличивается. Особенно высоким давлением насыщения характеризуются нефти, в которых растворено значительное количество азота.

    С повышением температуры давление насыщения может значительно увеличивается (рис. 4.7.).
    Рис. 4.7. Зависимость насыщения пластовой нефти Новодмитриевского месторождения от температуры
    В пластовых условиях давление насыщения может соответствовать пластовому давлению (нефть полностью насыщена газом) или быть меньше его (нефть недонасыщена газом). Большинство месторождений Томской области и в целом Западной Сибири являются недонасыщенными залежами.

    Пробы нефти, отобранные на одной и той же залежи, показывают часто разное давление насыщения. Это объясняется изменением свойств и состава нефти и газа в пределах залежи.
    4.6. Сжимаемость нефти
    Нефть, как и все жидкости, обладает упругостью, т.е. способностью изменять свой объём под действием внешнего давления. Уменьшение объёма характеризуется коэффициентом сжимаемости () или объёмной упругости:

    . (4.14)

    Коэффициент сжимаемости зависит от температуры (рис. 4.8), давления (рис. 4.9), состава нефти и газового фактора.



    Рис. 4.8. Зависимость коэффициента сжимаемости от температуры нефти Новодмитриевского месторождения

    Рис. 4.9. Зависимость коэффициента сжимаемости от давления и температуры для нефти плотностью 800 кг/м3 Новодмитриевского месторождения



    Нефти, не содержащие растворённого газа, обладают сравнительно низким коэффициентом сжимаемости ( ≈ 0,4-0,7 ГПа-1), а лёгкие нефти со значительным содержанием растворённого газа – повышенным коэффициентом сжимаемости (до 14 ГПа-1). Следовательно, с увеличением плотности нефти коэффициент сжимаемости уменьшается, а с увеличением количества растворенного углеводородного газа коэффициент сжимаемости нефти возрастает. Высокие коэффициенты сжимаемости свойственны нефтям, которые находятся в пластовых условиях, близких к критическим. Возрастание пластовой температуры вызывает увеличение коэффициентом сжимаемости.
    4.7. Объёмный коэффициент нефти
    С количеством растворённого газа в нефти также связан объёмный коэффициент b, характеризующий соотношение объёмов нефти в пластовых условиях и после отделения газа на поверхности при дегазации:

    , (4.15)

    где Vпл – объём нефти в пластовых условиях;

    Vдег – объём нефти при стандартных условиях после дегазации.

    Увеличение пластового давления до давления насыщения приводит к увеличению количества растворенного в нефти газа и как следствие к увеличению величины объёмного коэффициента (рис. 4.10).


    Рис. 4.10 Изменение объемного коэффициента нефти при изменении пластового давления

    Дальнейшее увеличение пластового давления, выше давления насыщения будет влиять на уменьшение объёма нефти в пластовых условиях за счет ее сжимаемости, что приводит к уменьшению коэффициента сжимаемости. Точка б (рис. 4.10) отвечает состоянию, когда весь газ, находящийся в залежи сконденсировался и перешел в жидкое состояние и началу выделения газа из нефти и отвечает максимальному значению объёмного коэффициента нефти.

    Объёмный коэффициент определяется по глубинным пробам. Для большинства месторождений величина b изменяется в диапазоне 1,07-1,3. Для месторождений Западной Сибири величина b колеблется от 1,1 до 1,2. Используя объёмный коэффициент, можно определить усадку нефти (U), т.е. уменьшение объёма пластовой нефти при извлечении её на поверхность (в %):

    , (4.16)

    Усадка некоторых нефтей достигает 45-50 %.

    Рассмотрим пример. Найти коэффициент изменения объёма насыщенной нефти газом в пластовых условиях, если плотность нефти (ρн) при 15°С равна 850 кг/м 3, а относительная плотность газа по воздуху (ρог) составляет 0,9 кг/л, газовый фактор (Го) равен 120 м3/т, давление пластовое (Рпл) 150 атм, пластовая температура (Тпл) 50 °С.

    Решение. Пользуясь зависимостями рисунка 4.11, находим кажущуюся плотность газа (г.к.) для величин относительной плотности газа (ρог) равной 0,9 и плотности нефти (н) равной 850 кг/м3. Кажущая плотность растворенного газа (г.к) = 440 кг/м3 (0,44 кг/л).

    Вес газа (Gг), растворенного в 1 м3 нефти оценивается по уравнению:

    Gг = Го • н • ог • Gв,
    где Го – газовый фактор, м3/т = 120 м3/т;

    н – плотность нефти, кг/м3 = 0,85 т/м3,

    ог – плотность газа относительная = 0,9,

    Gв – вес 1 м3 воздуха при Р = 1 атм и Т = 15°С = 1,22 кг.
    Вес газа составляет: Gг = 120 • 0,85 • 0,9 • 1,22 = 112 кг ([м3/т] • т/м3]•[кг]).


    Рис. 4.11. Изменение кажущейся плотности газа в жидкой фазе для нефтей с различными плотностями

    Объём газа в жидкой фазе оценивается:
    V = Gг/г.к = 112 кг / 440 кг/м3 = 0,254 м3

    Общий объём насыщенной нефти газом при атмосферном давлении соответственно равен:

    Vнг = 1 + 0,254 = 1,254 м3
    Вес насыщенной нефти газом определяется:
    Gнг = 850 кг + 112 кг = 962 кг
    Плотность насыщенной нефти газом рассчитывается по уравнению:
    нг = Gнг/Vнг = 962/1,254 = 767 (кг/м3).
    Для оценки величины плотности нефти в пластовых условиях необходимо учесть еще две поправки: на изменение плотности за счет сжатия под давлением (р) и на изменение плотности за счет расширения под влиянием температуры (t).

    Поправку на сжимаемость нефти (р) находим используя зависимости рисунка 3.12, для 150 атм р составляет 22 кг/м3.

    Рис. 4.12. Изменение плотности нефти в зависимости от пластового давления

    Поправку на расширение нефти за счет увеличения температуры (t) находим, используя зависимости рисунка 4.13 (цифры на зависимостях обозначают плотность нефти в кг/ м3 при 15,5оС):
    : t = 860–850 = 10 кг/м3.
    Таким образом, плотность нефти с учетом пластовых Р и T и насыщения ее газом составит:

    'нг = нг + нг + t = 767 + 10 – 22 = 755 (кг/м3).
    Коэффициент изменения объёма нефти, насыщенной газом для пластовых условий будет равен:
    b = Vпл/Vдег, b = дег/п = 850/755 = 1,126.

    Рис. 4. 13. Изменение плотности нефтей в зависимости от температуры
    То есть, каждый м3 нефти (н.у.) занимает в пластовых условиях объём 1,126 м3. Усадка нефти составляет:
    U = (1,126 – 1)/1,126 = 0,11 или 11 %.
    4.8. Тепловые свойства нефтей
    Повышение температуры снижает вязкость нефти, увеличивает её текучесть. Количество энергии, которое необходимо затратить для нагревания аномольновязких или высокопарафинистых нефтей, зависит от их теплоёмкости.

    Под теплоёмкостью понимается количество теплоты, которое необходимо передать единице массы этого вещества, чтобы повысить его температуру на 1 Цельсия или Кельвина. Для большинства нефтей величина теплоёмкости (с) лежит в пределах: 1500-2500 Дж/(кг·К) ≈ 350-600 кал/(кг·К). Теплоемкость пресной воды = 4190 Дж/(кг·К)

    Для повышения температуры нефти объёма (V), c плотность. (ρ) от температуры (Т1) до значения (Т2) необходимо затратить количество (Q) энергии, равное:
    Q =ρ · c · (Т2 - Т1) · V. (4.17)
    Однако величина теплоёмкости зависит от температуры, поэтому каждое её значение необходимо относит к определенной температуре или к интервалу температур.

    Теплопроводность нефтей определяет перенос энергии от более нагретых участков неподвижной нефти к более холодным. Коэффициент теплопроводности () описывается законом теплопроводности Фурье и характеризует количество теплоты (dQ), переносимой в веществе через единицу площади (S) в единицу времени (t) при градиенте температуры (dT/dx), равном единице:
    . (4.18)
    Коэффициент теплопроводности () для нефтей находится в интервале 0,1-0,2 Вт/(м·К).

    Теплота сгорания характеризует количество тепла, выделившегося при сгорании 1 кг жидкости. Различают высшую (Qв) и низшую (Qн) теплоту сгорания. Высшая теплота сгорания – это количество тепла, выделившегося при сгорании 1 кг жидкости при наличии в ней влаги. Низшая теплота сгорания – это количество тепла, выделившегося при сгорании 1 кг жидкости за вычетом тепла направленного на испарения воды и влаги. С увеличением молекулярной массы газообразного углеводорода, влажности, молекулярной массы фракций теплота сгорания растет.
    4.9. Электрические свойства нефтей
    Нефть – диэлектрик. Диэлектрическая проницаемость (ε) показывает, во сколько раз взаимодействие между электрическими зарядами в данном веществе меньше, чем в вакууме, при прочих равных условиях. Теоретически считается, что если у вещества ε < 2,5, то вещество считается диэлектрик. Величины диэлектрической проницаемости изменяются в следующих диапазонах: для воздуха → 1 – 1,0006; для нефти → 1,86 – 2,38; для нефтяного газа → 1,001 – 1,015; для смол и асфальтенов → 2,7 – 2,8; для воды → 80 – 80,1.

    С увеличением минерализации диэлектрическая проницаемость будет падать. Например, для растворов NaCl в воде при концентрации NaCl равной 5,6 % диэлектрическая проницаемость воды равна – 69,1, а при концентрации NaCl равной 10,7 % диэлектрическая проницаемость уменьшится до 59.

    Электрические свойства зависят от содержания асфальто-смолистых веществ в нефти и с увеличением их содержания можно говорить и об электрической проводимости нефти. Величина удельной электропроводности (γ, ом·м-1) нефтей изменяется в диапазоне → 0,5 · 10-7–0,5 · 10-6; газоконденсатов и светлых нефтепродуктов → 10-10 – 10-16 [ом· м]-1.
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта